Câu hỏi:

31/01/2025 79 Lưu

Cho \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f(x)}} - 5}}{{{\rm{x}} - 4}} = 5\]. Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2} \right)\left( {\sqrt {6{\rm{f(x)}} + 6} + 4} \right)}}\]

A. -2

B. -1

C. 2

D. 3

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì\[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{{\rm{x}} - 4}} = 5\]nên \[{\rm{f}}\left( 4 \right) - 5 = 0 \Rightarrow {\rm{f}}\left( 4 \right) = 5\]

Ta có:

\[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2)(\sqrt {6{\rm{f}}\left( {\rm{x}} \right) + 6} + 4} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{{\rm{x}} - 4}}.\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{\sqrt {\rm{x}} + 2}}{{\sqrt {6{\rm{f}}\left( {\rm{x}} \right) + 6} + 4}} = 5.\frac{{\sqrt 2 + 2}}{{\sqrt {6.{\rm{f}}\left( 4 \right) + 6} + 4}} = 2\]Chọn đáp án C

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2 + 2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} + \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = {\rm{I + J}}\]

Tính\[{\rm{I}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^2} + {\rm{x}} + 2 - 4}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} + 2} \right)}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{\rm{x}} + 2}}{{\sqrt 2 \left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}} = \frac{3}{{4\sqrt 2 }}\]

và\[{\rm{J}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{8 - 7{\rm{x}} - 1}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left[ {4 + 2\sqrt[3]{{7{\rm{x}} + 1}} + {{\left( {\sqrt[3]{{7{\rm{x}} + 1}}} \right)}^2}} \right]}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{ - 7}}{{\sqrt 2 \left[ {4 + 2\sqrt[3]{{7{\rm{x}} + 1}} + {{\left( {\sqrt[3]{{7{\rm{x}} + 1}}} \right)}^2}} \right]}} = \frac{{ - 7}}{{12\sqrt 2 }}\]

Do đó\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = {\rm{I + J}} = \frac{{\sqrt 2 }}{{12}}\]

Suy ra a = 1, b = 12, c = 0. Vậy a + b + c = 13.

Đáp án cần chọn là: A

Lời giải

Ta có

\[{\rm{A = }}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{{\rm{x}}^{\rm{n}}} - {\rm{1}}}}{{{{\rm{x}}^{\rm{m}}} - {\rm{1}}}}{\rm{ = }}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{\rm{(x}} - {\rm{1)(}}{{\rm{x}}^{{\rm{n}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1)}}}}{{{\rm{(x}} - {\rm{1)(}}{{\rm{x}}^{{\rm{m}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1)}}}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{{\rm{n}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1}}}}{{{{\rm{x}}^{{\rm{m}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - 3}}{\rm{ + }}...{\rm{ + x + 1}}}} = \frac{{1 + 1 + 1 + ... + 1 + 1}}{{1 + 1 + 1 + ... + 1 + 1}} = \frac{{\rm{n}}}{{\rm{m}}}\]

Chọn đáp án D

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP