Câu hỏi:
31/01/2025 51Cho hàm số \[{\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {{\rm{mx + 1}}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} \ne 0}\\{4{{\rm{x}}^2} + 5{\rm{n}}\,\,{\rm{khi}}\,\,{\rm{x}} = 0}\end{array}} \right.\left( {{\rm{m,n}} \in \mathbb{R}} \right)\] liên tục tại x0 = 0. Tìm hệ thức liên hệ giữa m và n
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Ta có f(0) = 5n
\[\mathop {\lim }\limits_{{\rm{x}} \to 0} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{\sqrt {{\rm{mx}} + 1} - 1}}{{\rm{x}}} = \mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{\left( {\sqrt {{\rm{mx}} + 1} - 1} \right)\left( {\sqrt {{\rm{mx + 1}}} + 1} \right)}}{{{\rm{x}}\left( {\sqrt {{\rm{mx}} + 1} + 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{\rm{m}}}{{\sqrt {{\rm{mx + 1}}} {\rm{ + 1}}}} = \frac{{\rm{m}}}{2}\]Vì hàm số liên tục tại x0 = 0 nên \[\mathop {\lim }\limits_{{\rm{x}} \to 0} {\rm{f}}\left( {\rm{x}} \right){\rm{ = f}}\left( {\rm{0}} \right) \Leftrightarrow {\rm{5n = }}\frac{{\rm{m}}}{{\rm{2}}} \Leftrightarrow {\rm{m = 10n}}\]
Chọn đáp án C
Đáp án cần chọn là: C
Đã bán 244
Đã bán 104
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:
Câu 2:
Cho a, b là các số dương. Biết \[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + \sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}}} \right) = \frac{7}{{27}}\] Tìm giá trị lớn nhất của a. b
Câu 3:
Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]
Câu 4:
Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a,b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b
Câu 5:
Tính giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {2 + {\rm{x}}} \right)\]
Câu 6:
Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to - 3} \left| {\frac{{ - {{\rm{x}}^2} - {\rm{x}} + 6}}{{{{\rm{x}}^2} + 3{\rm{x}}}}} \right|\]
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận