Câu hỏi:

31/01/2025 11

Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to {3^ - }} \frac{{3 - {\rm{x}}}}{{\sqrt {27 - {{\rm{x}}^3}} }}\]bằng:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có 3 – x > 0  với mọi x < 3

\[ \Rightarrow \mathop {\lim }\limits_{{\rm{x}} \to {3^ - }} \frac{{3 - {\rm{x}}}}{{\sqrt {27 - {{\rm{x}}^3}} }} = \mathop {\lim }\limits_{{\rm{x}} \to {3^ - }} \frac{{3 - {\rm{x}}}}{{\sqrt {\left( {3 - {\rm{x}}} \right)\left( {9 + 3{\rm{x}} + {{\rm{x}}^2}} \right)} }} = \mathop {\lim }\limits_{{\rm{x}} \to {3^ - }} \frac{{\sqrt {3 - {\rm{x}}} }}{{\sqrt {9 + 3{\rm{x}} + {{\rm{x}}^2}} }} = \frac{{\sqrt {3 - 3} }}{{\sqrt {9 + 3.3 + {3^2}} }} = 0\]

Chọn đáp án B

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:

Xem đáp án » 31/01/2025 43

Câu 2:

Chọn đáp án sai:

Xem đáp án » 31/01/2025 25

Câu 3:

Tính giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {2 + {\rm{x}}} \right)\]

Xem đáp án » 31/01/2025 23

Câu 4:

Cho các giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = 1}},\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{g}}\left( {\rm{x}} \right){\rm{ = 4}}\].Tính\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + 2g}}\left( {\rm{x}} \right)} \right]\]

Xem đáp án » 31/01/2025 21

Câu 5:

Chọn đáp án đúng:

Nếu \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}},\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{g}}\left( {\rm{x}} \right){\rm{ = M}}\]thì:

Xem đáp án » 31/01/2025 19

Câu 6:

Cho a, b là các số dương. Biết \[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + \sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}}} \right) = \frac{7}{{27}}\] Tìm giá trị lớn nhất của a. b

Xem đáp án » 31/01/2025 19

Câu 7:

Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]

Xem đáp án » 31/01/2025 16

Bình luận


Bình luận