Câu hỏi:
14/02/2025 8Một miếng đất hình chữ nhật có chiều dài hơn chiều rộng \(25{\rm{ m}}\). Nếu giảm chiều dài đi \(25{\rm{ m}}\) thì diện tích sẽ nhỏ hơn diện tích ban đầu là \(1{\rm{ }}000{\rm{ }}{{\rm{m}}^2}\). Gọi chiều dài ban đầu của miếng dất là \(x\) \(\left( {x > 25,{\rm{ m}}} \right).\)
a) Chiều rộng ban đầu của miếng đất là \(x - 25{\rm{ }}\left( {\rm{m}} \right)\).
b) Khi chiều dài giảm đi \(25{\rm{ m}}\)ta được chiều dài mới bằng chiều rộng ban đầu của mảnh đất.
c) Phương trình mô tả bài toán là \(x\left( {x - 25} \right) - \left( {x - 25} \right)\left( {x - 25} \right) = 1{\rm{ }}000\).
d) Diện tích ban đầu của mảnh đất là \({\rm{2 600 }}\left( {{{\rm{m}}^2}} \right)\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đ b) Đ c) Đ d) Đ
Gọi chiều dài ban đầu của miếng dất là \(x\) \(\left( {x > 25,{\rm{ m}}} \right).\)
Chiều rộng ban đầu của miếng đất là \(x - 25{\rm{ }}\left( {\rm{m}} \right)\).
Chiều dài của miếng dất sau khi giảm là \(x - 25{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích ban đầu của mảnh đất là: \(x\left( {x - 25} \right){\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích sau khi giảm chiều dài của mảnh đất là: \(\left( {x - 25} \right)\left( {x - 25} \right){\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Theo đề, diện tích sau khi giảm sẽ nhỏ hơn diện tích ban đầu là \(1{\rm{ }}000{\rm{ }}{{\rm{m}}^2}\) nên ta có phương trình:
\(x\left( {x - 25} \right) - \left( {x - 25} \right)\left( {x - 25} \right) = 1{\rm{ 000 }}\left( {{{\rm{m}}^2}} \right)\)
Giải phương trình, ta có:
\(x\left( {x - 25} \right) - \left( {x - 25} \right)\left( {x - 25} \right) = 1{\rm{ 000}}\)
\({x^2} - 25x - {x^2} + 50x - 625 = 1{\rm{ 000}}\)
\(25x = 1{\rm{ }}625\)
\(x = 65\) (thỏa mãn).
Do đó, diện tích ban đầu của miếng đất là \(65.\left( {65 - 25} \right) = 2{\rm{ }}600{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 6{\rm{ cm,}}\) \(AC = 8{\rm{ cm}}\). Kẻ đường cao \(AH\). Gọi \(M,N\) lần lượt là hình chiếu của \(H\) trên \(AB,AC\).
a) Tính độ dài cạnh \(BC\).
b) Chứng minh \(AH.BC = AB.AC\) và .
c) Tính diện tích tứ giác \(BMNC\).
Câu 2:
Giả sử các biểu thức đều có nghĩa. Áp dụng quy tắc đổi dấu ta viết được phân thức \(\frac{{5 - x}}{{11 - {x^2}y}}\) bằng phân thức
Câu 3:
Cho biểu thức \(A = \frac{{x - 2}}{{x + 2}} - \frac{x}{{x - 2}} - \frac{{9x - 2}}{{4 - {x^2}}}\) \(\left( {x \ne 2;x \ne - 2} \right)\). Biết rằng, khi rút gọn \(A\), ta được \(A = \frac{a}{{x - 2}}\). Tìm giá trị của \(a\).
Câu 4:
Kết quả của biểu thức \(\frac{3}{{2x + 6}} - \frac{{x - 6}}{{2{x^2} + 6x}}\) là
Câu 5:
Công thức nào dưới đây thể hiện phép nhân hai phân thức \(\frac{A}{B}\) với phân thức \(\frac{M}{N}\)?
Câu 6:
Điều kiện xác định của phân thức \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}}\) là
Câu 7:
Kết quả của phép tính \(\frac{{\left( { - 20x} \right)}}{{3{y^2}}}:\frac{{\left( { - 4{x^3}} \right)}}{{5y}}\) là
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Cách tìm mẫu thức chung cực hay, nhanh nhất
10 Bài tập Ứng dụng của xác suất thực nghiệm trong một số bài toán đơn giản (có lời giải)
về câu hỏi!