Câu hỏi:

15/02/2025 448

Cho hình thang \(ABCD\) có hai đáy \(AB\)\(CD\). Gọi \(M\) là trung điểm của \(CD\), \(E\) là giao điểm của \(MA\)\(BD\), \(F\) là giao điểm của \(MB\)\(AC\). Đường thẳng \(EF\) cắt \(AD,BC\) lần lượt tại \(H\)\(N\). Biết \(AB = 7,5{\rm{ cm}}\), \(CD = 12{\rm{ cm}}\).

 a) \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}}.\)

 b) \(\frac{{BF}}{{FM}} = \frac{{AB}}{{MC}}.\)

 c) \(HE = EF = FN\).

 d) \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}} = \frac{9}{5}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: a) Đ     b) Đ         c) Đ         d) S

Cho hình thang \(ABCD\) có hai đáy \(AB\) và \(CD\). Gọi \(M\) là trung điểm của \(CD\), \(E\) là giao điểm (ảnh 1)

a) Vì \(ABCD\) là hình thang có hai đáy \(AB\)\(CD\) nên \(AB\parallel CD\).

\(AB\parallel DM\) (do \(AB\parallel CD\)) nên theo hệ quả của định lí Thalès ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}}.\) (1)

b) Vì \(AB\parallel MC\) (do \(AB\parallel CD\)) nên theo hệ quả định lí Thalès ta có \(\frac{{BF}}{{FM}} = \frac{{AB}}{{MC}}.\) (2)

Lại có \(M\) là trung điểm của \(CD\) nên \(MD = MC\) (3)

Từ (1), (2), (3) ta có \(\frac{{AE}}{{EM}} = \frac{{BF}}{{FM}}\), theo định lí Thalès đảo ta có \(AB\parallel EF\).

c) Xét \(\Delta ADM\)\(HE\parallel DM\) nên theo hệ quả của định lí Thalès ta có: \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}}.\)

Xét \(\Delta AMC\)\(FE\parallel MC\), theo hệ quả của định lí Thalès ta có \(\frac{{FE}}{{CM}} = \frac{{AE}}{{AM}}.\)

Do đó, \(\frac{{FE}}{{CM}} = \frac{{HE}}{{DM}}\), mà \(DM = MC\) nên \(HE = EF\).

Xét \(\Delta BMC\)\(FN\parallel MC\) nên \(\frac{{FN}}{{CM}} = \frac{{BF}}{{FM}}\).

\(\frac{{AE}}{{EM}} = \frac{{BF}}{{FM}}\) nên \(\frac{{FN}}{{CM}} = \frac{{AE}}{{EM}}\) hay \(\frac{{FN}}{{CM}} = \frac{{AE}}{{AM}}\).

Suy ra \(\frac{{FN}}{{CM}} = \frac{{FE}}{{CM}}\) suy ra \(FN = EF\).

Vậy \(HE = EF = FN\).

d) Vì \(M\) là trung điểm của \(CD\) nên \(MD = MC = \frac{1}{2}CD = \frac{1}{2}.12 = 6{\rm{ cm}}\).

Theo câu a) ta có: \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}} = \frac{{7,5}}{6} = \frac{5}{4}\).

Suy ra \(\frac{{AE}}{5} = \frac{{EM}}{4}.\)

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{AE}}{5} = \frac{{EM}}{4} = \frac{{AE + EM}}{{5 + 4}} = \frac{{AM}}{9}\).

Do đó, \(\frac{{AE}}{{AM}} = \frac{5}{9}.\)

Mà theo câu c) \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}} = \frac{5}{9}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có bảng thống kê:

 

8A1

8A2

8A3

8A4

Cầu lông

10

8

5

12

Cờ vua

12

14

14

10

Ta vẽ biểu đồ cột kép biểu diễn số lượng học sinh tham gia đăng kí câu lạc bộ cầu lông và cờ vua của trường đó như sau:

Biểu đồ dưới đây thể hiện số lượng học sinh tham gia đăng kí hai câu lạc bộ cầu lông và cờ vua của trường. (ảnh 2)

b) • Vì số lượng tham gia câu lạc bộ cầu lông của lớp 8A1 chiếm \(25\% \) tổng số học sinh cả lớp nên số học sinh của lớp 8A1 là: \(10:25\% = 10:\frac{1}{4} = 40\) (học sinh)

• Từ bảng thống kê, nhận thấy học sinh lớp 8A3 đăng kí cầu lông ít hơn lớp 8A4 là \(3\) bạn và đăng kí câu lạc bộ cờ vua nhiều hơn lớp 8A4 là \(2\) bạn.

Lời giải

Đáp án đúng là: D

Dữ liệu không hợp lí là \(65\) vì số học sinh này đã vượt quá so với tổng số học sinh lớp 8A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lựa chọn biểu đồ tranh khi muốn

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay