Câu hỏi:

15/02/2025 15

Cho tam giác \(ABC\)\(AB = 4{\rm{ cm,}}\) \(AC = 5{\rm{ cm,}}\) \(BC = 6{\rm{ cm}}\). Các đường phân giác \(BD\)\(CE\) cắt nhau tại \(I\).

a) Tính \(AD,DC.\)

b) Tính các tỉ số \(\frac{{DI}}{{DB}};\frac{{BE}}{{BA}};\frac{{AD}}{{AC}}\).

c) Tính tỉ số diện tích các tam giác \(DIE\)\(ABC\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Cho tam giác ABC có AB= 4cm , AC = 5cm, BC = 6 cm  . Các đường phân giác BD và CE  cắt nhau tại  I. (ảnh 1)

a) Xét \(\Delta ABC\)\(BD\) là tia phân giác của \(\widehat {ABC}\) nên \(\frac{{AB}}{{BC}} = \frac{{DA}}{{DC}}\) (tính chất đường phân giác) .

Do đó, \(\frac{{DC}}{{BC}} = \frac{{DA}}{{BA}}\).

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{DC}}{{BC}} = \frac{{DA}}{{BA}} = \frac{{DC + DA}}{{BC + BA}} = \frac{{AC}}{{BC + AB}} = \frac{5}{{6 + 4}} = \frac{1}{2}\).

Do đó, \(AD = \frac{1}{2}AB = \frac{1}{2}.4 = 2{\rm{ cm}}\), \(CD = \frac{1}{2}BC = \frac{1}{2}.6 = 3{\rm{ cm}}\).

b) Xét \(\Delta BCD\)\(CI\) là phân giác của \(\widehat {DCB}\) nên \(\frac{{DI}}{{BI}} = \frac{{DC}}{{BC}} = \frac{1}{2}\) (tính chất đường phân giác).

Suy ra \(\frac{{DI}}{{BI + DI}} = \frac{1}{{2 + 1}}\) hay \(\frac{{DI}}{{DB}} = \frac{1}{3}\).

Lại có \(CE\) là phân giác của \(\widehat {ACB}\) nên \(\frac{{BE}}{{EA}} = \frac{{BC}}{{AC}} = \frac{6}{5}\), suy ra \(\frac{{BE}}{{BA}} = \frac{6}{{11}}\).

\(BD\) là tia phân giác của \(\widehat {CBA}\) nên \(\frac{{AD}}{{DC}} = \frac{{AB}}{{BC}} = \frac{6}{5}\), suy ra \(\frac{{AD}}{{AC}} = \frac{2}{5}\).

c) Gọi \({h_1},{h_2},{h_3}\) lần lượt là độ dài đường cao kẻ từ \(E\) đến \(BD\), độ dài đường cao kẻ từ \(D\) đến \(AB\), độ dài đường cao kẻ từ \(B\) đến \(AC\).

Ta có: \({S_{DIE}} = \frac{1}{2}{h_1}.DI;\)\({S_{DEB}} = \frac{1}{2}{h_1}.DB = \frac{1}{2}{h_2}.BE\) ;

          \({S_{ABD}} = \frac{1}{2}{h_2}.AB = \frac{1}{2}{h_3}.AD\); \({S_{ABC}} = \frac{1}{2}{h_3}.AC\).

Do đó, \(\frac{{{S_{DIE}}}}{{{S_{BDE}}}} = \frac{{{h_1}.DI}}{{{h_1}.BD}} = \frac{{DI}}{{DB}} = \frac{1}{3}\); \(\frac{{{S_{DEB}}}}{{{S_{BDA}}}} = \frac{{{h_2}.BE}}{{{h_2}.AB}} = \frac{{BE}}{{AB}} = \frac{6}{{11}}\); \(\frac{{{S_{DBA}}}}{{{S_{ABC}}}} = \frac{{{h_3}.AD}}{{{h_3}.AC}} = \frac{{AD}}{{AC}} = \frac{2}{5}\).

Khi đó, \({S_{DIE}} = \frac{1}{3}{S_{BDE}} = \frac{1}{3}.\frac{6}{{11}}{S_{ABD}} = \frac{1}{3}.\frac{6}{{11}}.\frac{2}{5}{S_{ABC}} = \frac{4}{{55}}{S_{ABC}}\).

Suy ra \(\frac{{{S_{DEI}}}}{{{S_{ABC}}}} = \frac{4}{{55}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(\Delta ABC\)\(K,F\) lần lượt là trung điểm của \(AB,BC\). Khẳng định nào dưới đây là đúng?

Xem đáp án » 15/02/2025 65

Câu 2:

Cho ba đường thẳng \({d_1}:y = x - 1\), \({d_2}:y = - x + 1\)\({d_3}:y = - 3ax + 2a - 1\). Tìm giá trị của \(a\) để hai đường thẳng \({d_1}\) cắt \({d_2}\) tại một điểm thuộc đường thẳng \({d_3}\).

Xem đáp án » 15/02/2025 43

Câu 3:

Điểm trong mặt phẳng tọa độ có hoành độ âm và tung độ dương sẽ nằm ở góc phần tư thứ mấy?

Xem đáp án » 15/02/2025 35

Câu 4:

Một ô tô đi từ \(A\) đến \(B\) từ \(6\) giờ sáng, lúc \(7\) giờ sáng cùng ngày, một xe khách cũng đi từ \(A\) và tới \(B\) cùng lúc với ô tô. Vậy nếu gọi thời gian đi của xe khách là \(x\) (giờ) thì thời gian đi của ô tô là:

Xem đáp án » 15/02/2025 31

Câu 5:

Điểm \(M\left( {{x_0};{y_0}} \right)\) thì \({y_0}\) được gọi là

Xem đáp án » 15/02/2025 23

Câu 6:

Cho hình thang \(ABCD\)\(AB\parallel CD\)\(AB < CD\). Đường thẳng song song với đáy \(AB\) cắt các cạnh bên \(AD,BC\) theo thứ tự tại \(M,N\).

 a) \(\frac{{EA}}{{AD}} = \frac{{EB}}{{BC}}.\)

 b) \(\frac{{EA}}{{AM}} = \frac{{BN}}{{BE}}.\)

 c) \(\frac{{MA}}{{MD}} = \frac{{NB}}{{NC}}.\)

 d) \(\frac{{MD}}{{DA}} = \frac{{BC}}{{NC}}.\)

Xem đáp án » 15/02/2025 23

Câu 7:

Giá trị \(x = - 2\) là nghiệm của phương trình nào trong các phương trình sau?

Xem đáp án » 15/02/2025 22

Bình luận


Bình luận