Câu hỏi:

15/02/2025 373

Cho ba đường thẳng \(\left( d \right):y = 3x + 8\), \(\left( {d'} \right):y = 2x + 3\)\(\left( {d''} \right):y = \left( {2m - 1} \right)x + m - 3\). Xác định giá trị của tham số \(m\) để ba đường thẳng đồng quy.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(1\)

• Xét phương trình hoành độ giao điểm của \(\left( d \right)\)\(\left( {d'} \right)\), ta có:

\(3x + 8 = 2x + 3\) hay \(3x - 2x = 3 - 8\) suy ra \(x = - 5\).

Thay \(x = - 5\) vào đường thẳng \(\left( d \right):y = 3x + 8\), ta được: \(y = - 7\).

Vậy giao điểm của hai đường thẳng \(\left( d \right)\)\(\left( {d'} \right)\)\(A\left( { - 5; - 7} \right)\).

Để ba đường thẳng đồng quy thì \(\left( {d''} \right):y = \left( {2m - 1} \right)x + m - 3\) cũng đi qua điểm \(A\left( { - 5; - 7} \right)\).

Thay \(x = - 5\), \(y = - 7\) vào \(\left( {d''} \right)\) ta được:

\(\left( {2m - 1} \right).\left( { - 5} \right) + m - 3 = - 7\) hay \( - 10m + 5 + m - 3 = - 7\) hay \( - 9m = - 9\) suy ra \(m = 1.\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Thay \(x = - 1,y = 1\) vào đường thẳng \(\left( d \right)\), ta được:

\(\left( {m - 2} \right)\left( { - 1} \right) + 2 = 1\) hay \( - m + 4 = 1\) suy ra \(m = 3\).

Vậy với \(m = 3\) ta được đường thẳng \(\left( d \right):y = x + 2\).

b) Gọi đường thẳng \(\left( {d'} \right):y = ax + b\).

Theo đề, đường thẳng \(\left( {d'} \right)\) song song với đường thẳng \(\left( d \right)\) nên \(a = 1\).

Lúc này, ta có: \(\left( {d'} \right):y = x + b\).

\(\left( {d'} \right)\) cắt trục tung tại điểm có tung độ bằng \(3\) nên \(\left( {d'} \right)\) đi qua điểm \(B\left( {0;3} \right)\).

Thay \(x = 0,y = 3\) vào \(\left( {d'} \right)\), ta được \(0 + b = 3\) suy ra \(b = 3.\)

Vậy \(\left( {d'} \right):y = x + 3.\)

Lời giải

Hướng dẫn giải

Cho tam giác ABC  vuông tại  A  có  AB = 8cm , AC = 6cm  . Có M ,N  là trung điểm của  AB , AC. (ảnh 1)

a) Áp dụng định lí Pythagore vào tam giác \(ABC\) vuông tại \(A\), ta có:

\(A{B^2} + A{C^2} = B{C^2}\)

\({8^2} + {6^2} = B{C^2}\)

\(B{C^2} = 100\) suy ra \(BC = 10{\rm{ cm}}\).

\(M,N\) là trung điểm của \(AB,AC\) nên \(MN\) là đường trung bình của tam giác \(ABC\).

Do đó, \(MN = \frac{1}{2}BC = \frac{1}{2}.10 = 5{\rm{ cm}}{\rm{.}}\)

b) Có \(AD\) là phân giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\) suy ra \(\frac{{BD}}{{DC + BD}} = \frac{{AB}}{{AC + AB}}\) suy ra \(\frac{{BD}}{{10}} = \frac{6}{{14}}\).

Do đó, \(BD = \frac{{10.6}}{{14}} = \frac{{30}}{7}{\rm{ cm}}{\rm{.}}\)

c) Có \(AD\) là phân giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\).

Lại có \(MN\parallel BC\) suy ra \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) hay \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (2).

Từ (1) và (2) suy ra \(\frac{{AM}}{{AN}} = \frac{{DB}}{{DC}}\) hay \(BD.AN = AM.DC\) (đpcm).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP