Câu hỏi:
16/02/2025 331
Nhà may \(A\) sản xuất một lô áo gồm 200 chiếc áo với giá vốn là \[30\,\,000\,\,000\] đồng và giá bán một chiếc áo là \[300\,\,000\] đồng. Khi đó gọi \(K\) (đồng) là số tiền lời (hoặc lỗ) củ nhà may thu được khi bán \(t\) chiếc áo.
a) Viết hàm số biểu diễn số tiền lời (hoặc lỗ) \(K\) của nhà may thu được khi bán \(t\) chiếc áo. Hỏi nhà may cần phải bán bao nhiêu chiếc áo mới có thể thu hồi được vốn ban đầu?
b) Để lời được \[6\,\,000\,\,000\] đồng thì nhà may cần phải bán bao nhiêu chiếc áo?
Nhà may \(A\) sản xuất một lô áo gồm 200 chiếc áo với giá vốn là \[30\,\,000\,\,000\] đồng và giá bán một chiếc áo là \[300\,\,000\] đồng. Khi đó gọi \(K\) (đồng) là số tiền lời (hoặc lỗ) củ nhà may thu được khi bán \(t\) chiếc áo.
a) Viết hàm số biểu diễn số tiền lời (hoặc lỗ) \(K\) của nhà may thu được khi bán \(t\) chiếc áo. Hỏi nhà may cần phải bán bao nhiêu chiếc áo mới có thể thu hồi được vốn ban đầu?
b) Để lời được \[6\,\,000\,\,000\] đồng thì nhà may cần phải bán bao nhiêu chiếc áo?
Quảng cáo
Trả lời:
a) Hàm số biểu diễn số tiền lời (hoặc lỗ) \(K\) của nhà may thu được khi bán \(t\) chiếc áo là: \(K = 300\,\,000t - 30\,\,000\,\,000\) (đồng) (với \(0 \le t \le 200).\)
Để nhà may thu hồi được vốn ban đầu thì \(K = 0,\) ta thay vào công thức\(K = 300\,\,000t - 30\,\,000\,\,000,\) ta được:
\[0 = 300\,\,000t - 30\,\,000\,\,000,\] suy ra \(t = 100.\)
Vậy cần phải bán ra được 100 chiếc áo mới thu hồi được vốn ban đầu.
b) Để nhà may lời được \(6\,\,000\,\,000\) thì \(K = 6\,\,000\,\,000,\) thay vào công thức \(K = 300\,\,000t - 30\,\,000\,\,000,\) ta được:
\(6\,\,000\,\,000 = 300\,\,000t - 30\,\,000\,\,000,\) suy ra \(t = 120.\)
Vậy cần phải bán ra được 120 chiếc áo mới lời được 6 000 000 đồng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét \(\Delta ABM\) có \(EG\,{\rm{//}}\,BM,\) theo định lí Thalès ta có: \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\) b) Xét \(\Delta DCN\) có \(BM\,{\rm{//}}\,CN,\) theo định lí Thalès ta có: \(\frac{{DN}}{{MD}} = \frac{{DC}}{{DB}}.\) Mà \(D\) là trung điểm của \(BC\) (do \(AD\) là trung tuyến của tam giác) nên \(DC = DB.\) Do đó \(\frac{{DN}}{{MD}} = \frac{{DC}}{{DB}} = 1,\) nên \(DM = DN.\) |
![]() |
Suy ra \(GM + GN = GM + GM + MN = 2GM + 2MD = 2GD.\)
Lại có \(G\) là trọng tâm \(\Delta ABC\) nên \(AG = 2GD.\)
Xét \(\Delta ACN\) có \(FG\,{\rm{//}}\,CN,\) theo định lí Thalès ta có: \(\frac{{CF}}{{AF}} = \frac{{GN}}{{AG}}.\)
Suy ra \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = \frac{{MG}}{{AG}} + \frac{{GN}}{{AG}} = \frac{{GM + GN}}{{AG}} = \frac{{2GD}}{{2GD}} = 1.\)
c) Xét \(\Delta ABM\) có \(EG\,{\rm{//}}\,BM,\) theo định lí Thalès ta có: \(\frac{{AB}}{{AE}} = \frac{{AM}}{{AG}}.\)
Xét \(\Delta ACN\) có \[FG\,{\rm{//}}\,CN,\] theo định lí Thalès ta có: \(\frac{{AC}}{{AF}} = \frac{{AN}}{{AG}}.\)
Suy ra \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = \frac{{AM}}{{AG}} + \frac{{AN}}{{AG}}\)\( = \frac{{AG + GM + AG + GM + MN}}{{AG}}\)
\( = \frac{{2AG + 2GM + 2MD}}{{AG}}\)\( = \frac{{2AG + 2\left( {GM + MD} \right)}}{{AG}} = \frac{{2AG + 2GD}}{{AG}}\)
\( = \frac{{2AG + 2 \cdot \frac{1}{2}AG}}{{AG}} = \frac{{3AG}}{{AG}} = 3.\)
Vậy \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)
Lời giải
![Lúc 6 giờ sáng, bạn Hải đi xe đạp từ điểm \[A\] đến trường (tại điểm \(B)\) phải leo lên và xuống một con (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/02/blobid37-1739679361.png)
Thời gian để bạn Hải đi từ \[A\] đến \[C\] là: \[6\] giờ \[30\] phút \( - \,\,6\) giờ \[ = 30\] phút \[ = 0,5\] giờ.
Quãng đường mà bạn Hải đi từ \[A\] đến \[C\] trong \(0,5\) giờ với tốc độ trung bình lên dốc 4 km/h là: \[AC = {S_{A \to C}} = 4 \cdot 0,5 = 2\] (km).
Xét \(\Delta ACB\) có \[CH\] là đường phân giác của \(\widehat {ACB},\) nên ta có: \(\frac{{HA}}{{HB}} = \frac{{CA}}{{CB}}\) hay \(\frac{{0,32}}{{0,4}} = \frac{2}{{CB}}\) Suy ra \(CB = \frac{{0,4 \cdot 2}}{{0,32}} = 2,5\) (km).
Thời gian để bạn Hải đi hết quãng đường \(2,5\) km với tốc độ trung bình xuống dốc 10 km/h là: \(\frac{{2,5}}{{10}} = 0,25\) (giờ).
Như vậy, tổng thời gian bạn Hải đi từ \[A\] đến trường \[B\] là
\[0,5 + 0,25 = 0,75\] (giờ) \[ = 45\] (phút).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.