Câu hỏi:

16/02/2025 1,129

Cho \(\Delta ABC\)\(AD\) là trung tuyến, trọng tâm \(G,\) đường thẳng đi qua \(G\) cắt các cạnh \(AB,\,\,AC\) lần l\(B,\,\,C\)ượt tại \(E,\,\,F.\) Từ  kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,\,\,N.\) Chứng minh rằng:

a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\)                         b) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1.\)                          c) \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xét \(\Delta ABM\)\(EG\,{\rm{//}}\,BM,\) theo định lí Thalès ta có: \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\)

b) Xét \(\Delta DCN\)\(BM\,{\rm{//}}\,CN,\) theo định lí Thalès ta có: \(\frac{{DN}}{{MD}} = \frac{{DC}}{{DB}}.\)

\(D\) là trung điểm của \(BC\) (do \(AD\) là trung tuyến của tam giác) nên \(DC = DB.\)

Do đó \(\frac{{DN}}{{MD}} = \frac{{DC}}{{DB}} = 1,\) nên \(DM = DN.\)

Cho tam giác ABC có AD là trung tuyến , trọng tâm G, đường thẳng đi qua G cắt các cạnh AB , AC (ảnh 1)

Suy ra \(GM + GN = GM + GM + MN = 2GM + 2MD = 2GD.\)

Lại có \(G\) là trọng tâm \(\Delta ABC\) nên \(AG = 2GD.\)

Xét \(\Delta ACN\)\(FG\,{\rm{//}}\,CN,\) theo định lí Thalès ta có: \(\frac{{CF}}{{AF}} = \frac{{GN}}{{AG}}.\)

Suy ra \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = \frac{{MG}}{{AG}} + \frac{{GN}}{{AG}} = \frac{{GM + GN}}{{AG}} = \frac{{2GD}}{{2GD}} = 1.\)

c) Xét \(\Delta ABM\)\(EG\,{\rm{//}}\,BM,\) theo định lí Thalès ta có: \(\frac{{AB}}{{AE}} = \frac{{AM}}{{AG}}.\)

Xét \(\Delta ACN\)\[FG\,{\rm{//}}\,CN,\] theo định lí Thalès ta có: \(\frac{{AC}}{{AF}} = \frac{{AN}}{{AG}}.\)

Suy ra \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = \frac{{AM}}{{AG}} + \frac{{AN}}{{AG}}\)\( = \frac{{AG + GM + AG + GM + MN}}{{AG}}\)

\( = \frac{{2AG + 2GM + 2MD}}{{AG}}\)\( = \frac{{2AG + 2\left( {GM + MD} \right)}}{{AG}} = \frac{{2AG + 2GD}}{{AG}}\)

\( = \frac{{2AG + 2 \cdot \frac{1}{2}AG}}{{AG}} = \frac{{3AG}}{{AG}} = 3.\)

Vậy \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lúc 6 giờ sáng, bạn Hải đi xe đạp từ điểm \[A\] đến trường (tại điểm \(B)\) phải leo lên và xuống một con (ảnh 2)

Thời gian để bạn Hải đi từ \[A\] đến \[C\] là: \[6\] giờ \[30\] phút \( - \,\,6\) giờ \[ = 30\] phút \[ = 0,5\] giờ.

Quãng đường mà bạn Hải đi từ \[A\] đến \[C\] trong \(0,5\) giờ với tốc độ trung bình lên dốc 4 km/h là: \[AC = {S_{A \to C}} = 4 \cdot 0,5 = 2\] (km).

Xét \(\Delta ACB\)\[CH\] là đường phân giác của \(\widehat {ACB},\) nên ta có: \(\frac{{HA}}{{HB}} = \frac{{CA}}{{CB}}\) hay \(\frac{{0,32}}{{0,4}} = \frac{2}{{CB}}\)  Suy ra \(CB = \frac{{0,4 \cdot 2}}{{0,32}} = 2,5\) (km).

Thời gian để bạn Hải đi hết quãng đường \(2,5\) km với tốc độ trung bình xuống dốc 10 km/h là: \(\frac{{2,5}}{{10}} = 0,25\) (giờ).

Như vậy, tổng thời gian bạn Hải đi từ \[A\] đến trường \[B\]

\[0,5 + 0,25 = 0,75\] (giờ) \[ = 45\] (phút).

Lời giải

a) Hàm số biểu diễn số tiền lời (hoặc lỗ) \(K\) của nhà may thu được khi bán \(t\) chiếc áo là: \(K = 300\,\,000t - 30\,\,000\,\,000\) (đồng) (với \(0 \le t \le 200).\)

Để nhà may thu hồi được vốn ban đầu thì \(K = 0,\) ta thay vào công thức\(K = 300\,\,000t - 30\,\,000\,\,000,\) ta được:

\[0 = 300\,\,000t - 30\,\,000\,\,000,\] suy ra \(t = 100.\)

Vậy cần phải bán ra được 100 chiếc áo mới thu hồi được vốn ban đầu.

b) Để nhà may lời được \(6\,\,000\,\,000\) thì \(K = 6\,\,000\,\,000,\) thay vào công thức \(K = 300\,\,000t - 30\,\,000\,\,000,\) ta được:

\(6\,\,000\,\,000 = 300\,\,000t - 30\,\,000\,\,000,\) suy ra \(t = 120.\)

Vậy cần phải bán ra được 120 chiếc áo mới lời được 6 000 000 đồng.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay