Câu hỏi:

16/02/2025 109

Cho hai đường thẳng \({d_1}:y = mx - 2m - 2\)\({d_2}:y = \left( {3 - 2m} \right)x + 1\) với \(m \ne 0\)\(m \ne \frac{3}{2}.\)

a) Tìm giá trị của \(m\) để đường thẳng \({d_1}\) đi qua điểm \(A\left( {1;1} \right).\)

b) Gọi \(\alpha \) là góc tạo bởi đường thẳng \({d_1}\) ở câu a và trục \(Ox.\) Hỏi \(\alpha \) là góc nhọn hay góc tù? Vì sao?

c) Tìm giá trị của \(m\) để \({d_1}\)\({d_2}\) cắt nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Do đường thẳng \[{d_1}\] đi qua điểm \(A\left( {1;1} \right)\) nên thay \[x = 1,{\rm{ }}y = 1\] vào hàm số \[y = mx - 2m - 2\] ta có:

\[1 = m \cdot 1 - 2m - 2\]

Do đó \[1 = m--2m--2\]

Suy ra \[m = --3.\]

Vậy với \[m = - 3\] thì đường thẳng \({d_1}\) đi qua điểm \(A\left( {1;1} \right).\)

b) Với \[m = - 3\], ta có đường thẳng \[{d_1}:{\rm{ }}y = - 3x + 4.\]

Suy ra hệ số góc của đường thẳng \[{d_1}\]\[a = --3 < 0.\] Vậy góc \(\alpha \) là góc tù.

c) Để \({d_1}\)\({d_2}\) cắt nhau thì \[m \ne 3 - 2m\] hay \[3m \ne 3\], suy ra \[m \ne 1.\]

Vậy với \(m \ne 0,m \ne \frac{3}{2},m \ne 1\) thì \({d_1}\)\({d_2}\) cắt nhau.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[MN\] là thanh ngang; \[BC\] là độ rộng giữa hai bên thang.

Thanh ngang \[MN\] nằm chính giữa thang nên \[M;{\rm{ }}N\]là trung điểm \[AB\] \[AC.\]

Suy ra \[MN\] là đường trung bình của tam giác \[ABC.\]

Suy ra \(MN = \frac{1}{2}BC = \frac{1}{2}.80 = 40\,\,{\rm{(cm)}}\).

Vậy người thợ đã làm thanh ngang đó dài \[40{\rm{ cm}}.\]

Khi thiết kế một cái thang gấp, để đảm bảo an toàn người thợ đã làm thêm một thanh ngang để giữ cố định ở chính giữa (ảnh 2)

Lời giải

Cho tam giác ABC có đường phân giác AD a) giả sử AB= 6cm , BC = 10 cm , AC = 9 cm (ảnh 1)

a) Xét \(\Delta ABC\)\(AD\) là tia phân giác của \(\widehat {BAC},\) nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}}\) (tính chất đường phân giác), suy ra \(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}}.\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}} = \frac{{AB + AC}}{{DB + DC}} = \frac{{AB + AC}}{{BC}} = \frac{{6 + 9}}{{10}} = \frac{{15}}{{10}} = \frac{3}{2}.\)

Suy ra \(DB = \frac{2}{3}AB = \frac{2}{3} \cdot 6 = 4{\rm{\;cm}},\,\,DC = \frac{2}{3}AC = \frac{2}{3} \cdot 9 = 6{\rm{\;cm}}.\)

b) Từ \(AE = \frac{1}{3}AB\) suy ra \(\frac{{AE}}{{AB}} = \frac{1}{3}.\)

Từ \(AC = 3AF\) suy ra \(\frac{{AF}}{{AC}} = \frac{1}{3}.\)

Do đó \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{1}{3}.\)

Theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,BC.\)

c) Xét \(\Delta FBC\)\(IA\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{FI}}{{FB}} = \frac{{AF}}{{FC}} = \frac{{IA}}{{BC}}.\,\,\,\left( 1 \right)\)

Xét \(\Delta EBC\)\(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{EA}}{{EB}} = \frac{{AK}}{{BC}}.\,\,\,\left( 2 \right)\)

Xét \(\Delta ABC\)\(EF\,{\rm{//}}\,BC\) (câu b) theo hệ quả định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{{EF}}{{BC}},\) suy ra \(\frac{{AE}}{{AE + AB}} = \frac{{AF}}{{AF + AC}},\) hay \(\frac{{AE}}{{EB}} = \frac{{AF}}{{FC}}.\,\,\,\left( 3 \right)\)

Từ (1), (2) và (3) suy ra \(\frac{{IA}}{{BC}} = \frac{{AK}}{{BC}},\) do đó \(AI = AK,\) hay \(A\) là trung điểm của \(IK.\)

ii) Xét \(\Delta EBC\)\(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{CK}}{{CE}} = \frac{{CA}}{{CF}}.\,\,\,\left( 4 \right)\)

Từ (1) và (4) ta có \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = \frac{{AF}}{{FC}} + \frac{{CA}}{{CF}} = \frac{{FC}}{{FC}} = 1.\)

Vậy \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay