Câu hỏi:

16/02/2025 1,054 Lưu

Cho \(\Delta ABC\) có đường phân giác \(AD.\)

a) Giả sử \(AB = 6\;{\rm{cm}},\) \(BC = 10\;{\rm{cm}},\) \(AC = 9\;{\rm{cm}}.\) Tính độ dài đoạn thẳng \(BD.\)

b) Trên tia đối của các tia \(AB\)\(AC,\) lần lượt lấy các điểm \(E\)\(F\) sao cho \(AE = \frac{1}{3}AB,\,\,AC = 3AF.\) Chứng minh \(EF\,{\rm{//}}\,BC.\)

c) Qua \(A,\) kẻ đường thẳng \(d\) song song với \(BC.\) Đường thẳng \(d\) cắt \(BF\)\(CE\) lần lượt tại \(I\)\(K.\) Chứng minh:

i) \(A\) là trung điểm của \(IK.\)             ii) \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có đường phân giác AD a) giả sử AB= 6cm , BC = 10 cm , AC = 9 cm (ảnh 1)

a) Xét \(\Delta ABC\)\(AD\) là tia phân giác của \(\widehat {BAC},\) nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}}\) (tính chất đường phân giác), suy ra \(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}}.\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}} = \frac{{AB + AC}}{{DB + DC}} = \frac{{AB + AC}}{{BC}} = \frac{{6 + 9}}{{10}} = \frac{{15}}{{10}} = \frac{3}{2}.\)

Suy ra \(DB = \frac{2}{3}AB = \frac{2}{3} \cdot 6 = 4{\rm{\;cm}},\,\,DC = \frac{2}{3}AC = \frac{2}{3} \cdot 9 = 6{\rm{\;cm}}.\)

b) Từ \(AE = \frac{1}{3}AB\) suy ra \(\frac{{AE}}{{AB}} = \frac{1}{3}.\)

Từ \(AC = 3AF\) suy ra \(\frac{{AF}}{{AC}} = \frac{1}{3}.\)

Do đó \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{1}{3}.\)

Theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,BC.\)

c) Xét \(\Delta FBC\)\(IA\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{FI}}{{FB}} = \frac{{AF}}{{FC}} = \frac{{IA}}{{BC}}.\,\,\,\left( 1 \right)\)

Xét \(\Delta EBC\)\(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{EA}}{{EB}} = \frac{{AK}}{{BC}}.\,\,\,\left( 2 \right)\)

Xét \(\Delta ABC\)\(EF\,{\rm{//}}\,BC\) (câu b) theo hệ quả định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{{EF}}{{BC}},\) suy ra \(\frac{{AE}}{{AE + AB}} = \frac{{AF}}{{AF + AC}},\) hay \(\frac{{AE}}{{EB}} = \frac{{AF}}{{FC}}.\,\,\,\left( 3 \right)\)

Từ (1), (2) và (3) suy ra \(\frac{{IA}}{{BC}} = \frac{{AK}}{{BC}},\) do đó \(AI = AK,\) hay \(A\) là trung điểm của \(IK.\)

ii) Xét \(\Delta EBC\)\(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{CK}}{{CE}} = \frac{{CA}}{{CF}}.\,\,\,\left( 4 \right)\)

Từ (1) và (4) ta có \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = \frac{{AF}}{{FC}} + \frac{{CA}}{{CF}} = \frac{{FC}}{{FC}} = 1.\)

Vậy \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[MN\] là thanh ngang; \[BC\] là độ rộng giữa hai bên thang.

Thanh ngang \[MN\] nằm chính giữa thang nên \[M;{\rm{ }}N\]là trung điểm \[AB\] \[AC.\]

Suy ra \[MN\] là đường trung bình của tam giác \[ABC.\]

Suy ra \(MN = \frac{1}{2}BC = \frac{1}{2}.80 = 40\,\,{\rm{(cm)}}\).

Vậy người thợ đã làm thanh ngang đó dài \[40{\rm{ cm}}.\]

Khi thiết kế một cái thang gấp, để đảm bảo an toàn người thợ đã làm thêm một thanh ngang để giữ cố định ở chính giữa (ảnh 2)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP