Câu hỏi:
16/02/2025 765Cho \(\Delta ABC\) có đường phân giác \(AD.\)
a) Giả sử \(AB = 6\;{\rm{cm}},\) \(BC = 10\;{\rm{cm}},\) \(AC = 9\;{\rm{cm}}.\) Tính độ dài đoạn thẳng \(BD.\)
b) Trên tia đối của các tia \(AB\) và \(AC,\) lần lượt lấy các điểm \(E\) và \(F\) sao cho \(AE = \frac{1}{3}AB,\,\,AC = 3AF.\) Chứng minh \(EF\,{\rm{//}}\,BC.\)
c) Qua \(A,\) kẻ đường thẳng \(d\) song song với \(BC.\) Đường thẳng \(d\) cắt \(BF\) và \(CE\) lần lượt tại \(I\) và \(K.\) Chứng minh:
i) \(A\) là trung điểm của \(IK.\) ii) \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Xét \(\Delta ABC\) có \(AD\) là tia phân giác của \(\widehat {BAC},\) nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}}\) (tính chất đường phân giác), suy ra \(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}}.\)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}} = \frac{{AB + AC}}{{DB + DC}} = \frac{{AB + AC}}{{BC}} = \frac{{6 + 9}}{{10}} = \frac{{15}}{{10}} = \frac{3}{2}.\)
Suy ra \(DB = \frac{2}{3}AB = \frac{2}{3} \cdot 6 = 4{\rm{\;cm}},\,\,DC = \frac{2}{3}AC = \frac{2}{3} \cdot 9 = 6{\rm{\;cm}}.\)
b) Từ \(AE = \frac{1}{3}AB\) suy ra \(\frac{{AE}}{{AB}} = \frac{1}{3}.\)
Từ \(AC = 3AF\) suy ra \(\frac{{AF}}{{AC}} = \frac{1}{3}.\)
Do đó \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{1}{3}.\)
Theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,BC.\)
c) Xét \(\Delta FBC\) có \(IA\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{FI}}{{FB}} = \frac{{AF}}{{FC}} = \frac{{IA}}{{BC}}.\,\,\,\left( 1 \right)\)
Xét \(\Delta EBC\) có \(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{EA}}{{EB}} = \frac{{AK}}{{BC}}.\,\,\,\left( 2 \right)\)
Xét \(\Delta ABC\) có \(EF\,{\rm{//}}\,BC\) (câu b) theo hệ quả định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{{EF}}{{BC}},\) suy ra \(\frac{{AE}}{{AE + AB}} = \frac{{AF}}{{AF + AC}},\) hay \(\frac{{AE}}{{EB}} = \frac{{AF}}{{FC}}.\,\,\,\left( 3 \right)\)
Từ (1), (2) và (3) suy ra \(\frac{{IA}}{{BC}} = \frac{{AK}}{{BC}},\) do đó \(AI = AK,\) hay \(A\) là trung điểm của \(IK.\)
ii) Xét \(\Delta EBC\) có \(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{CK}}{{CE}} = \frac{{CA}}{{CF}}.\,\,\,\left( 4 \right)\)
Từ (1) và (4) ta có \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = \frac{{AF}}{{FC}} + \frac{{CA}}{{CF}} = \frac{{FC}}{{FC}} = 1.\)
Vậy \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Giá bán 1 kg táo Ninh thuận trong siêu thị là \[45\,\,000\] đồng.
a) Gọi số tiền phải trả khi mua táo là \[y\] (đồng), số lượng táo mua là \[x\,\,\left( {{\rm{kg}}} \right){\rm{.}}\] Viết công thức biểu diễn \[y\] theo \[x\]. Hỏi y có phải là hàm số \[x\] không? Vì sao?
b) Bình đã tính số tiền mua táo như bảng sau:
Số lượng táo (kg) |
3 |
5 |
7 |
Số tiền (đồng) |
\[135\,\,000\] |
\[225\,\,000\] |
\[320\,\,000\] |
Bình tính đúng hay sai đối với từng trường hợp mua \[3\,\,{\rm{kg}}\,{\rm{;}}\,\,5\,\,{\rm{kg}}\,{\rm{;}}\,7\,\,{\rm{kg}}\] táo? Nếu sai hãy sửa lại cho đúng.
Câu 3:
Trong giờ thực hành thí nghiệm, một học sinh thả một miếng chì có khối lượng \(0,31\) kg đang ở nhiệt độ \(100^\circ {\rm{C}}\) vào \(0,25\) kg nước đang ở nhiệt độ \(58,5^\circ {\rm{C}}.\) Biết nhiệt dung riêng của nước là \(4\,\,200\) J/kg.K, nhiệt dung riêng của chì là 130 J/kg.K. gọi \(t^\circ {\rm{C}}\) là nhiệt độ khi đạt trạng thái cân bằng nhiệt, \({Q_{nuoc}}\) (J) là nhiệt lượng nước thu vào để tăng nhiệt độ từ \(58,5^\circ {\rm{C}}\) lên \(t^\circ {\rm{C,}}\) \({Q_{chi}}\) (J) là nhiệt lượng chì tỏa ra để giảm nhiệt độ từ \(100^\circ {\rm{C}}\) xuống \(t^\circ {\rm{C}}{\rm{.}}\)
a) Biết công thức tính nhiệt lượng thu vào/ tỏa ra là: \(Q = m \cdot c \cdot \Delta t\) (J), trong đó \(m\) là khối lượng của vật (kg), \(c\) là nhiệt dung riêng của chất làm nên vật (J/kg.K) và \(\Delta t = {t_2} - {t_1}\) là độ tăng/giảm nhiệt độ của vật \(\left( {^\circ {\rm{C}}} \right)\) với \({t_1}\) là nhiệt độ ban đầu, \({t_2}\) là nhiệt độ cuối cùng. Viết công thức tính \({Q_{chi}}\) theo \(t.\)
b) Công thức tìm được ở câu a có phải là hàm số bậc nhất không? Nếu có, hãy tìm các hệ số \(a,\,\,b\) của nó. Khi có sự cân bằng nhiệt thì nhiệt độ của nước và chì là bao nhiêu (làm tròn kết quả đến hàng đơn vị)?
Câu 4:
Cho hai đường thẳng \({d_1}:y = mx - 2m - 2\) và \({d_2}:y = \left( {3 - 2m} \right)x + 1\) với \(m \ne 0\) và \(m \ne \frac{3}{2}.\)
a) Tìm giá trị của \(m\) để đường thẳng \({d_1}\) đi qua điểm \(A\left( {1;1} \right).\)
b) Gọi \(\alpha \) là góc tạo bởi đường thẳng \({d_1}\) ở câu a và trục \(Ox.\) Hỏi \(\alpha \) là góc nhọn hay góc tù? Vì sao?
c) Tìm giá trị của \(m\) để \({d_1}\) và \({d_2}\) cắt nhau.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận