Câu hỏi:
16/02/2025 702Cho hai hàm số \(y = x + 3\) (1) và \(y = - \frac{1}{2}x + 3\) (2).
a) Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng toạ độ.
b) Gọi giao điểm đồ thị của hàm số (1) và hàm số (2) với trục hoành lần lượt là \(M\) và \(N,\) giao điểm của hai đồ thị hàm số (1) và hàm số (2) là \(P.\) Xác định toạ độ các điểm \(M,\,\,N,P.\)
c) Tính diện tích và chu vi của \(\Delta MNP?\) (với độ dài đoạn đơn vị trên mặt phẳng tọa độ là \({\rm{cm}}).\)
Quảng cáo
Trả lời:
a) ⦁ Vẽ đồ thị hàm số \(y = x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = - 3.\)
Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( { - 3;0} \right).\)
⦁ Vẽ đồ thị hàm số \(y = - \frac{1}{2}x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = 6.\)
Đồ thị hàm số \(y = - \frac{1}{2}x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( {6;0} \right).\)
b)
Giao điểm đồ thị của hàm số (1) với trục hoành là \(M\left( { - 3;0} \right);\)
Giao điểm đồ thị của hàm số (2) với trục hoành là \(N\left( {6;0} \right);\)
Giao điểm của hai đồ thị hàm số (1) và hàm số (2) là \(P\left( {0;3} \right).\)
Vậy \(M\left( { - 3;0} \right);\,\,N\left( {6;0} \right);\,\,P\left( {0;3} \right).\)
c) Tính độ dài các cạnh của \(\Delta MNP:\)
\(MN = MO + ON = 3 + 6 = 9{\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(MP = \sqrt {M{O^2} + P{O^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} = 3\sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(NP = \sqrt {O{P^2} + O{N^2}} = \sqrt {{3^2} + {6^2}} = \sqrt {45} = 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Diện tích của \(\Delta MNP\) là: \({S_{\Delta MNP}} = \frac{1}{2}PO \cdot MN = \frac{1}{2} \cdot 3 \cdot 9 = \frac{{27}}{2}\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)
Chu vi tam giác \(MNP\) là: \(9 + 3\sqrt 2 + 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chiều cao trung bình của trẻ 13 tuổi là: \[0,75 + 0,05 \cdot \left( {13 - 1} \right) = 1,35 \left( m \right).\]
b) Gọi \[y\] là chiều cao trung bình; \[x\] là độ tuổi của trẻ em.
Công thức mô tả sự phụ thuộc giữa chiều cao trung bình và độ tuổi của trẻ em Việt Nam là:
\[y = 0,75 + 0,25\left( {x - 1} \right).\]
Lời giải
Ta có \(AB \bot AE;\,\,CD \bot AE\) nên \(CD\,{\rm{//}}\,AB\).
Xét tam giác \(ABE\) có \(CD\,{\rm{//}}\,AB\), ta có
\[\,\frac{{DE}}{{AB}} = \frac{{EC}}{{EA}}\] (hệ quả của định lí Thalès).
Hay \[\frac{{1,5}}{{AB}} = \frac{2}{{2 + 8}}\] suy ra \[AB = 7,5\,\,{\rm{m}}\].
Vậy chiều cao của cây là \[7,5\,\,{\rm{m}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận