Câu hỏi:

16/02/2025 400 Lưu

Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao \[1,5\,\,{\rm{m}}\] so với mặt đất, chân cọc cách gốc cây \[8\,\,{\rm{m}}\] và cách bóng của đỉnh cọc \[2\,\,{\rm{m}}.\] Tính chiều cao của cây (kết quả làm tròn đến chữ số thập phân thứ nhất).
Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(AB \bot AE;\,\,CD \bot AE\) nên \(CD\,{\rm{//}}\,AB\).

Xét tam giác \(ABE\)\(CD\,{\rm{//}}\,AB\), ta có

\[\,\frac{{DE}}{{AB}} = \frac{{EC}}{{EA}}\] (hệ quả của định lí Thalès).

Hay \[\frac{{1,5}}{{AB}} = \frac{2}{{2 + 8}}\] suy ra \[AB = 7,5\,\,{\rm{m}}\].

Vậy chiều cao của cây là \[7,5\,\,{\rm{m}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vẽ đồ thị hàm số \(y = x + 3:\)

Cho \(x = 0,\) ta có \(y = 3;\)

Cho \(y = 0,\) ta có \(x = - 3.\)

Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\)\(\left( { - 3;0} \right).\)

Vẽ đồ thị hàm số \(y = - \frac{1}{2}x + 3:\)

Cho \(x = 0,\) ta có \(y = 3;\)

Cho \(y = 0,\) ta có \(x = 6.\)

Đồ thị hàm số \(y = - \frac{1}{2}x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\)\(\left( {6;0} \right).\)

Cho hai hàm số y = x+3 (1) và y = -1/2 x + 3 (2) a) vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ (ảnh 1)

b)

Cho hai hàm số y = x+3 (1) và y = -1/2 x + 3 (2) a) vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ (ảnh 2)

Giao điểm đồ thị của hàm số (1) với trục hoành là \(M\left( { - 3;0} \right);\)

Giao điểm đồ thị của hàm số (2) với trục hoành là \(N\left( {6;0} \right);\)

Giao điểm của hai đồ thị hàm số (1) và hàm số (2) là \(P\left( {0;3} \right).\)

Vậy \(M\left( { - 3;0} \right);\,\,N\left( {6;0} \right);\,\,P\left( {0;3} \right).\)

c) Tính độ dài các cạnh của \(\Delta MNP:\)

\(MN = MO + ON = 3 + 6 = 9{\rm{\;}}\left( {{\rm{cm}}} \right);\)

\(MP = \sqrt {M{O^2} + P{O^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} = 3\sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right);\)

\(NP = \sqrt {O{P^2} + O{N^2}} = \sqrt {{3^2} + {6^2}} = \sqrt {45} = 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)

Diện tích của \(\Delta MNP\) là: \({S_{\Delta MNP}} = \frac{1}{2}PO \cdot MN = \frac{1}{2} \cdot 3 \cdot 9 = \frac{{27}}{2}\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)

Chu vi tam giác \(MNP\) là: \(9 + 3\sqrt 2 + 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)

Lời giải

a) Chiều cao trung bình của trẻ 13 tuổi là: \[0,75 + 0,05 \cdot \left( {13 - 1} \right) = 1,35 \left( m \right).\]

b) Gọi \[y\] là chiều cao trung bình; \[x\] là độ tuổi của trẻ em.

Công thức mô tả sự phụ thuộc giữa chiều cao trung bình và độ tuổi của trẻ em Việt Nam là:

\[y = 0,75 + 0,25\left( {x - 1} \right).\]