Câu hỏi:
16/02/2025 196Cho \(\Delta ABC,\) trung tuyến \[AM,\] đường phân giác của \(\widehat {AMB}\) cắt \[AB\] ở \[D,\] đường phân giác của \(\widehat {AMC}\) cắt \[AC\] ở \[E.\]
a) Chứng minh rằng \(AD \cdot AC = AE \cdot AB\) và \[DE\,{\rm{//}}\,BC.\]
b) Gọi \[I\] là giao điểm của \[AM\] và \[DE.\] Chứng minh rằng \(I\) là trung điểm của \(DE.\)
c) Tính \[DE,\] biết \[BC = 30{\rm{\;cm}}\] và \[AM = 10{\rm{\;cm}}.\]
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Xét \(\Delta ABM\) có \(MD\) là đường phân giác của \(\widehat {AMB}\) nên \(\frac{{MA}}{{MB}} = \frac{{DA}}{{DB}}\) \(\left( 1 \right)\) (tính chất đường phân giác của tam giác).
Xét \[\Delta ACM\] có \(ME\) là đường phân giác của \(\widehat {AMC}\) nên \(\frac{{MA}}{{MC}} = \frac{{EA}}{{EC}}\) \(\left( 2 \right)\) (tính chất đường phân giác của tam giác).
Do \(AM\) là đường trung tuyến của \[\Delta ABC\] nên \(M\) là trung điểm của \(BC,\) hay \(MB = MC = \frac{1}{2}BC.\,\,\,\left( 3 \right)\)
Từ \(\left( 1 \right),\,\,\left( 2 \right)\) và \(\left( 3 \right)\) ta có \(\frac{{DA}}{{DB}} = \frac{{EA}}{{EC}}.\)
Theo tính chất tỉ lệ thức ta có \(\frac{{DA}}{{DA + DB}} = \frac{{EA}}{{EA + EC}},\) hay \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}},\) suy ra \(AD \cdot AC = AE \cdot AB.\)
Xét \[\Delta ABC\] có \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}},\) theo định lí Thalès đảo ta có \[DE\,{\rm{//}}\,BC.\]
b) Xét \(\Delta ABM\) có \(DI\,{\rm{//}}\,BM,\) theo hệ quả định lí Thalès ta có \(\frac{{DI}}{{BM}} = \frac{{AI}}{{AM}}.\)
Xét \[\Delta ACM\] có \(IE\,{\rm{//}}\,MC,\) theo hệ quả định lí Thalès ta có \[\frac{{IE}}{{MC}} = \frac{{AI}}{{AM}}.\]
Do đó \(\frac{{DI}}{{BM}} = \frac{{IE}}{{MC}}.\)
Mà \(MB = MC\) (chứng minh ở câu a) nên \(DI = IE,\) hay \[I\] là trung điểm của \(DE.\)
c) Ta có \(MB = MC = \frac{1}{2}BC = \frac{1}{2} \cdot 30 = 15{\rm{\;cm}}.\)
Theo câu a, ta có \(\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}},\) suy ra \[\frac{{DA}}{{DA + DB}} = \frac{{MA}}{{MA + MB}} = \frac{{10}}{{10 + 15}} = \frac{{10}}{{25}} = \frac{2}{5}.\]
Do đó \(\frac{{AD}}{{AB}} = \frac{2}{5}.\)
Xét \(\Delta ABC\) có \(DE\,{\rm{//}}\,BC,\) theo hệ quả định lí Thalès ta có \(\frac{{DE}}{{BC}} = \frac{{AD}}{{AB}} = \frac{2}{5}.\)
Suy ra \(DE = \frac{2}{5}BC = \frac{2}{5} \cdot 30 = 12{\rm{\;}}\left( {{\rm{cm}}} \right).\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) ⦁ Vẽ đồ thị hàm số \(y = x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = - 3.\)
Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( { - 3;0} \right).\)
⦁ Vẽ đồ thị hàm số \(y = - \frac{1}{2}x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = 6.\)
Đồ thị hàm số \(y = - \frac{1}{2}x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( {6;0} \right).\)
b)
Giao điểm đồ thị của hàm số (1) với trục hoành là \(M\left( { - 3;0} \right);\)
Giao điểm đồ thị của hàm số (2) với trục hoành là \(N\left( {6;0} \right);\)
Giao điểm của hai đồ thị hàm số (1) và hàm số (2) là \(P\left( {0;3} \right).\)
Vậy \(M\left( { - 3;0} \right);\,\,N\left( {6;0} \right);\,\,P\left( {0;3} \right).\)
c) Tính độ dài các cạnh của \(\Delta MNP:\)
\(MN = MO + ON = 3 + 6 = 9{\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(MP = \sqrt {M{O^2} + P{O^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} = 3\sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(NP = \sqrt {O{P^2} + O{N^2}} = \sqrt {{3^2} + {6^2}} = \sqrt {45} = 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Diện tích của \(\Delta MNP\) là: \({S_{\Delta MNP}} = \frac{1}{2}PO \cdot MN = \frac{1}{2} \cdot 3 \cdot 9 = \frac{{27}}{2}\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)
Chu vi tam giác \(MNP\) là: \(9 + 3\sqrt 2 + 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Lời giải
a) Chiều cao trung bình của trẻ 13 tuổi là: \[0,75 + 0,05 \cdot \left( {13 - 1} \right) = 1,35 \left( m \right).\]
b) Gọi \[y\] là chiều cao trung bình; \[x\] là độ tuổi của trẻ em.
Công thức mô tả sự phụ thuộc giữa chiều cao trung bình và độ tuổi của trẻ em Việt Nam là:
\[y = 0,75 + 0,25\left( {x - 1} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận