Câu hỏi:

03/03/2025 14,425 Lưu

Một cái ly thủy tinh (như hình vẽ), phần phía trên là hình nón có chiều cao \[7\,{\rm{cm,}}\] có đáy đường tròn bán kính \[4\,\,{\rm{cm}}{\rm{.}}\] Biết trong ly đang chứa rượu với mức rượu đang cách miệng ly là \[3\,\,{\rm{cm}}.\]

Một cái ly thủy tinh (như hình vẽ), phần phía trên là hình nón có chiều cao   7 c m ,   có đáy đường tròn bán kính   4 c m .   Biết trong ly đang chứa rượu với mức rượu đang cách miệng ly là   3 c m . (ảnh 1)

a) Thể tích hình nón có bán kính đáy \(R\) và chiều cao \(h\), được tính bằng công thức: \(V = \pi {R^2}h.\)

b) Chiều cao của phần rượu có trong ly là \[4\,\,{\rm{cm}}.\]

c) Thể tích của cái ly thủy tinh là \[\frac{{28}}{3}\pi \,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}{\rm{.}}\]

d) Tỉ số giữa thể tích của phần còn lại trong ly rượu so với thể tích ly là \[\frac{4}{7}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: a) Đúng.b) Đúng.c) Sai.d) Sai.

⦁ Thể tích hình nón có bán kính đáy \(R\) và chiều cao \(h\), được tính bằng công thức: \(V = \frac{1}{3}\pi {R^2}h.\)

Do đó ý a) là sai.

⦁ Chiều cao của phần rượu có trong ly là \[7 - 3 = 4\,\,\left( {{\rm{cm}}} \right)\]. Do đó ý b) là đúng.

⦁ Thể tích của cái ly thủy tinh là \[V = \frac{1}{3}\pi \cdot {4^2} \cdot 7 = \frac{{112}}{3}\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right){\rm{.}}\] Do đó ý c) là sai.

⦁ Tỉ số giữa thể tích của phần còn lại trong ly rượu so với thể tích ly là: \[1 - {\left( {\frac{4}{7}} \right)^3} = \frac{{279}}{{343}}\].

Do đó ý d) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: 3.

Gọi \[x\] (xe) là số xe tải loại lớn cần sử dụng đề chở hết thiết bị \[\left( {x \in \mathbb{N}*} \right)\].

Số xe tải loại nhỏ cần sử dụng đề chở hết thiết bị là \[x + 2\] (xe).

Số tấn thiết bị mỗi xe tải loại lớn chở được là \(\frac{{15}}{x}\) (tấn).

Số tấn thiết bị mỗi xe tải loại nhỏ chở được là \(\frac{{15}}{{x + 2}}\) (tấn).

Theo bài ra ta có phương trình: \(\frac{{15}}{x} - \frac{{15}}{{x + 2}} = 2\)

\(15\left( {x + 2} \right) - 15x = 2x{\rm{\;}}\left( {{\rm{\;}}x + 2} \right)\)

\(15\left( {x + 2 - x} \right) = 2{x^2} + 4{\rm{\;}}x\)

\(2{x^2} + 4{\rm{\;}}x - 30 = 0\)

\({x^2} + 2{\rm{\;}}x - 15 = 0\)

\(x = 3\) (TMĐK) hoặc \[{\rm{\;}}x = - 5\] (loại)

Vậy đội vận chuyển sử dụng 3 xe tải loại lớn.

Lời giải

Hướng dẫn giải

Đáp số: \(0,5\).

Không gian mẫu của phép thử là:

\[\Omega = \left\{ {\left( {1\,;\,\,4} \right)\,;\,\,\left( {1\,;\,\,7} \right)\,;\,\,\left( {1\,;\,\,9} \right)\,;\,\,\left( {4\,;\,\,1} \right)\,;\,\left( {4\,;\,\,7} \right)\,;\,\left( {4\,;\,\,9} \right)\,;\,\left( {7\,;\,\,1} \right)\,;\,\left( {7\,;\,\,4} \right)\,;\,\left( {7\,;\,\,9} \right)\,;\,\left( {9\,;\,\,1} \right)\,;\,\left( {9\,;\,\,4} \right)\,;\,\left( {9\,;\,\,7} \right)} \right\}\].

Tập Ω có 12 phần tử.

Vì bạn Khuê và Hương lần lượt mỗi người lấy ra ngẫu nhiên một tấm thẻ từ hộp nên các kết quả có thể trên là đồng khả năng.

Xét biến cố \(A:\) “Số ghi trên tấm thẻ của bạn Khuê nhỏ hơn số ghi trên tấm thẻ của bạn Hương”.

Có 6 kết quả thuận lợi cho biến cố A là \[\Omega = \left\{ {\left( {1\,;\,\,4} \right)\,;\,\,\left( {1\,;\,\,7} \right)\,;\,\,\left( {1\,;\,\,9} \right)\,;\,\left( {4\,;\,\,7} \right)\,;\,\left( {4\,;\,\,9} \right);\,\,\left( {7\,;\,\,9} \right)} \right\}\].

Vậy xác suất của biến cố \(A\) là: \(\frac{6}{{12}} = \frac{1}{2} = 0,5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Tần số của nhóm là \[15\].

B. Tần số tương đối ghép nhóm của nhóm \[\left[ {7\,;\,\,13} \right)\] là \[10\% \].

C. Tần số tương đối ghép nhóm của nhóm \[\left[ {13\,;\,\,19} \right)\] là \[20\% \].

D. Tần số tương đối ghép nhóm của nhóm \[\left[ {19\,;\,\,25} \right)\] là \[30\% \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP