Câu hỏi:

10/03/2025 120

Trong hệ trục tọa độ \(Oxy\) cho hai điểm \(M\left( {4; - 3} \right),N\left( {4;1} \right)\) và đường thẳng \(d:x + 6y = 0\). Tìm bán kính (kết quả làm tròn đến hàng phần trăm) của đường tròn \(\left( C \right)\) đi qua \(M\) và \(N\) biết rằng các tiếp tuyến của \(\left( C \right)\) tại \(M\) và \(N\) cắt nhau tại điểm \(Q\) thuộc \(d\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 2,83

Trong hệ trục tọa độ   O x y   cho hai điểm   M ( 4 ; − 3 ) , N ( 4 ; 1 )   và đường thẳng   d : x + 6 y = 0  . Tìm bán kính (kết quả làm tròn đến hàng phần trăm) của đường tròn   ( C )   đi qua   M   và   N   biết rằng các tiếp tuyến của   ( C )   tại   M   và   N   cắt nhau tại điểm   Q   thuộc   d  . (ảnh 1)

Gọi \(I\) là tâm của đường tròn \(\left( C \right)\), \(H\) là trung điểm của \(MN\).

Suy ra \(H\left( {4; - 1} \right)\), \(\overrightarrow {MN} = \left( {0;4} \right) = 4\left( {0;1} \right)\).

Đường thẳng \(IQ\) đi qua điểm \(H\left( {4; - 1} \right)\) và nhận \(\overrightarrow n \left( {0;1} \right)\) làm vectơ pháp tuyến có phương trình là:

\(y + 1 = 0\).

Tọa độ điểm \(Q\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 6y = 0\\y + 1 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 1\end{array} \right.\). Do đó \(Q\left( {6; - 1} \right)\).

Ta có \[\overrightarrow {MQ} = \left( {2;2} \right)\], \(\overrightarrow {NQ} = \left( {2; - 2} \right)\).

Đường thẳng \(IM\) đi qua \(M\left( {4; - 3} \right)\) và nhận \(\overrightarrow {MQ} \) làm vectơ pháp tuyến có phương trình là:

\(2\left( {x - 4} \right) + 2\left( {y + 3} \right) = 0\)\( \Leftrightarrow x + y - 1 = 0\).

Đường thẳng \(IN\) đi qua \(N\left( {4;1} \right)\) và nhận \(\overrightarrow {NQ} \) làm vectơ pháp tuyến có phương trình là:

\(2\left( {x - 4} \right) - 2\left( {y - 1} \right) = 0\)\( \Leftrightarrow x - y - 3 = 0\).

Tọa độ điểm \(I\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + y = 1\\x - y = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = - 1\end{array} \right.\). Do đó \(I\left( {2; - 1} \right)\).

Bán kính của đường tròn \(\left( C \right)\) là \(R = IM = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( { - 3 + 1} \right)}^2}} = 2\sqrt 2 \approx 2,83\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điều kiện: \(n \ge 2,n \in \mathbb{N}\).

Ta có \(C_n^1 + C_n^2 = 15\)\( \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15\)\( \Leftrightarrow {n^2} + n - 30 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 6\end{array} \right.\)\( \Rightarrow n = 5\).

Với \(n = 5\) ta có \({\left( {x + \frac{2}{{{x^4}}}} \right)^5} = {x^5} + 5.{x^4}.\frac{2}{{{x^4}}} + 10.{x^3}.{\left( {\frac{2}{{{x^4}}}} \right)^2} + 10.{x^2}.{\left( {\frac{2}{{{x^4}}}} \right)^3} + 5.x.{\left( {\frac{2}{{{x^4}}}} \right)^4} + {\left( {\frac{2}{{{x^4}}}} \right)^5}\)

\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\).

Số hạng không chứa \(x\) trong khai triển trên là \(10\).

Lời giải

Hướng dẫn giải

Sắp xếp mẫu số liệu trên theo thứ tự tăng dần ta được: 7; 8; 11; 13; 15; 18; 19; 20; 22.

Ta có \({Q_1} = \frac{{8 + 11}}{2} = 9,5\); \({Q_3} = \frac{{19 + 20}}{2} = 19,5\).

Suy ra \({\Delta _Q} = {Q_3} - {Q_1} = 19,5 - 9,5 = 10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phép thử nào sau đây không phải phép thử ngẫu nhiên?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay