Câu hỏi:

10/03/2025 105

Trong hệ trục tọa độ \(Oxy\) cho hai điểm \(M\left( {4; - 3} \right),N\left( {4;1} \right)\) và đường thẳng \(d:x + 6y = 0\). Tìm bán kính (kết quả làm tròn đến hàng phần trăm) của đường tròn \(\left( C \right)\) đi qua \(M\) và \(N\) biết rằng các tiếp tuyến của \(\left( C \right)\) tại \(M\) và \(N\) cắt nhau tại điểm \(Q\) thuộc \(d\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 2,83

Trong hệ trục tọa độ   O x y   cho hai điểm   M ( 4 ; − 3 ) , N ( 4 ; 1 )   và đường thẳng   d : x + 6 y = 0  . Tìm bán kính (kết quả làm tròn đến hàng phần trăm) của đường tròn   ( C )   đi qua   M   và   N   biết rằng các tiếp tuyến của   ( C )   tại   M   và   N   cắt nhau tại điểm   Q   thuộc   d  . (ảnh 1)

Gọi \(I\) là tâm của đường tròn \(\left( C \right)\), \(H\) là trung điểm của \(MN\).

Suy ra \(H\left( {4; - 1} \right)\), \(\overrightarrow {MN} = \left( {0;4} \right) = 4\left( {0;1} \right)\).

Đường thẳng \(IQ\) đi qua điểm \(H\left( {4; - 1} \right)\) và nhận \(\overrightarrow n \left( {0;1} \right)\) làm vectơ pháp tuyến có phương trình là:

\(y + 1 = 0\).

Tọa độ điểm \(Q\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 6y = 0\\y + 1 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 1\end{array} \right.\). Do đó \(Q\left( {6; - 1} \right)\).

Ta có \[\overrightarrow {MQ} = \left( {2;2} \right)\], \(\overrightarrow {NQ} = \left( {2; - 2} \right)\).

Đường thẳng \(IM\) đi qua \(M\left( {4; - 3} \right)\) và nhận \(\overrightarrow {MQ} \) làm vectơ pháp tuyến có phương trình là:

\(2\left( {x - 4} \right) + 2\left( {y + 3} \right) = 0\)\( \Leftrightarrow x + y - 1 = 0\).

Đường thẳng \(IN\) đi qua \(N\left( {4;1} \right)\) và nhận \(\overrightarrow {NQ} \) làm vectơ pháp tuyến có phương trình là:

\(2\left( {x - 4} \right) - 2\left( {y - 1} \right) = 0\)\( \Leftrightarrow x - y - 3 = 0\).

Tọa độ điểm \(I\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + y = 1\\x - y = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = - 1\end{array} \right.\). Do đó \(I\left( {2; - 1} \right)\).

Bán kính của đường tròn \(\left( C \right)\) là \(R = IM = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( { - 3 + 1} \right)}^2}} = 2\sqrt 2 \approx 2,83\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(n\) là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 15\). Tìm số hạng không chứa \(x\) trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^n}\).

Xem đáp án » 10/03/2025 5,514

Câu 2:

PHẦN II. TỰ LUẬN

Mẫu số liệu sau cho biết số ghế trống tại một rạp chiếu phim trong 9 ngày như sau: 7; 8; 22; 20; 15; 18; 19; 13; 11. Xác định khoảng tứ phân vị cho mẫu số liệu trên.

Xem đáp án » 10/03/2025 4,033

Câu 3:

Tổ I của lớp 10A gồm có 7 học sinh gồm 4 nam và 3 nữ.

a) Xếp 7 học sinh của tổ I vào một hàng ngang để chụp ảnh có \(7!\) cách.

b) Có \(C_7^2\) cách chọn ra một cặp nam nữ của tổ I để tham gia hát song ca.

c) Lớp trưởng cần chọn ra 3 học sinh của tổ I để trực nhật lớp, trong đó 1 bạn quét lớp, 1 bạn lau bảng, 1 bạn kê bàn ghế. Số cách chọn là \(A_7^3\) cách.

d) Có 720 cách xếp 7 học sinh của tổ I vào một hàng dọc sao cho 3 bạn nữ luôn đứng cạnh nhau.

Xem đáp án » 10/03/2025 1,907

Câu 4:

Trong hộp có 15 tấm thẻ được đánh số từ 1 đến 15. Lấy ngẫu nhiên từ trong hộp ra 2 tấm thẻ. Tính số các kết quả thuận lợi của biến cố “Hai thẻ lấy ra có tổng là một số chẵn”.

Xem đáp án » 10/03/2025 545

Câu 5:

Phép thử nào sau đây không phải phép thử ngẫu nhiên?

Xem đáp án » 10/03/2025 503

Câu 6:

Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Xét phép thử chọn ngẫu nhiên 3 viên bi. Tính xác suất để chọn được nhiều nhất hai viên bi xanh.

Xem đáp án » 10/03/2025 493

Câu 7:

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN

A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.

Công thức tính số hoán vị \({P_n},n \in \mathbb{N}*\). Chọn công thức đúng?

Xem đáp án » 10/03/2025 480
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay