Câu hỏi:
17/03/2025 196Cho hàm số . Hàm số
có bảng xét dấu như sau:
|
|
0 |
|
2 |
|
|
+ |
0 |
- |
0 |
+ |
Hàm số nghịch biến trên khoảng nào trong các khoảng dưới đây?
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Sử dụng công thức đạo hàm hàm hợp: Cho . Khi đó
.
Sử dụng định lý quan hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm: Cho hàm số có đạo hàm trên
. Nếu
thì hàm số
đồng biến trên
. Nếu
thì hàm số
nghịch biến trên
.
Lời giải
Dựa vào BBT đề cho, ta có .
.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là B
Phương pháp giải
Công thức Bayes: .
Lời giải
Gọi lần lượt là các biến cố "chọn một sinh viên giỏi, khá, trung bình vào thi"
Gọi là biến cố "sinh viên được chọn vào thi trả lời được cả 4 câu".
Ta có: .
2 sinh viên giỏi trả lời được các câu hỏi, nên 2 sinh viên này trả lời được cả 20 câu hỏi trong đề cương ôn tập.
3 sinh viên khá trả lời được các câu hỏi, nên 3 sinh viên này trả lời được
câu hỏi trong đề cương ôn tập.
5 sinh viên trung bình trả lời được các câu hỏi, nên 5 sinh viên này chỉ trả lời được
câu hỏi trong đề cương ôn tập.
Do đó ;
.
Áp dụng công thức xác suất toàn phần:
Xác suất để sinh viên được chọn vào thi là sinh viên khá, biết sinh viên đó trả lời được cả 4 câu hỏi là
Lời giải
Đáp án đúng là C
Phương pháp giải
Cho và
là hai biến cố, trong đó
. Khi đó
.
Lời giải
Gọi là biến cố "người được chọn ra không nhiễm bệnh".
Và là biến cố "người được chọn ra không có phản ứng dương tính"
Theo bài ta có: .
Do đó: .
Xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính là
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)