Câu hỏi:

18/03/2025 661

(1,5 điểm) Cho tam giác \(ABC\) nhọn \(\left( {AB < AC} \right)\), đường cao \(AD{\rm{ }}\left( {D \in BC} \right)\). Gọi \(E,F\) lần lượt là hình chiếu của \(D\) trên \(AB\)\(AC\).

a) Chứng minh \(AE.AB = A{D^2} = AF.AC\)\(\widehat {AFE} = \widehat {ABC}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh \(AE.AB = A{D^2} = AF.AC\) và \(\widehat {AFE} = \widehat {ABC}\). (ảnh 1)

Xét \(\Delta AED\)\(\Delta ADB\) có:

\(\widehat A\) chung

\(\widehat {AED} = \widehat {ADB} = 90^\circ \)

Suy ra (g.g)

Suy ra \(\frac{{AE}}{{AD}} = \frac{{AD}}{{AB}}\), suy ra \(AE.AB = A{D^2}\) (1)

Xét \(\Delta AFD\)\(\Delta ADC\) có:

\(\widehat A\) chung

\(\widehat {AFD} = \widehat {ADC} = 90^\circ \) (gt)

Suy ra (g.g)

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AD}}{{AC}}\) suy ra \(AF.AC = A{D^2}\) (2)

Từ (1) và (2) suy ra \(AE.AB = A{D^2} = AF.AC.\)

Do đó, \(\frac{{AE}}{{AF}} = \frac{{AC}}{{AB}}\).

Xét \(\Delta AEF\)\(\Delta ACB\)có:

\(\widehat A\) chung

\(\frac{{AE}}{{AF}} = \frac{{AC}}{{AB}}\) (cmt)

Suy ra (c.g.c)

Suy ra \(\widehat {AEF} = \widehat {ACB}\).

Câu hỏi cùng đoạn

Câu 2:

b) Gọi \(I\) là giao điểm của \(FE\) và tia \(CB\). Chứng minh \(I{D^2} = IE.IF\).

Xem lời giải

verified Lời giải của GV VietJack

Vì (cmt) suy ra \(\widehat {AEF} = \widehat {ACB}\).

\(\widehat {AEF} = \widehat {IEB}\) (2 góc đối đỉnh)

Suy ra \(\widehat {ACB} = \widehat {IEB}\) (3)

Ta có: \(\widehat {IDF} = \widehat {DFC} + \widehat {ACB}\) (góc ngoài tam giác \(DFC\))

Suy ra \(\widehat {IDF} = 90^\circ + \widehat {ACB}\) (4)

\(\widehat {IED} = \widehat {IEB} + \widehat {BED} = \widehat {IEB} + 90^\circ \) (5)

Từ (3), (4), (5) suy ra \(\widehat {IDF} = \widehat {IED}\).

Xét \(\Delta IED\)\(\Delta IDF\) có:

\(\widehat I\) chung

\(\widehat {IED} = \widehat {IDF}\) (cmt)

Suy ra (g.g)

Suy ra \(\frac{{IE}}{{ID}} = \frac{{ID}}{{IF}}\) nên \(I{D^2} = IE.IF\) (đpcm)

Câu 3:

c) Gọi \(H\) là trực tâm của \(\Delta ABC,\) tia \(HB\) cắt \(EF\) tại \(K.\) Chứng minh \(DK \bot BH.\)

Xem lời giải

verified Lời giải của GV VietJack

\(H\) là trực tâm của \(\Delta ABC\) nên \(BH \bot AC\).

\(DF \bot AC\) nên \(BH\parallel DF\), suy ra \(\widehat {EFD} = \widehat {EKB}\) (hai góc đồng vị) (6)

Theo câu b) ta có nên \(\widehat {IDE} = \widehat {IFD}\) suy ra \(\widehat {BDE} = \widehat {EFD}\) (7)

Từ (6) và (7) suy ra \(\widehat {EKB} = \widehat {BDE}\).

Gọi \(L\) là giao điểm của \(BK\)\(ED\).

Xét \(\Delta EKL\)\(\Delta BDL\) có:

\(\widehat {EKL} = \widehat {LDB}\) (cmt)

\(\widehat {ELK} = \widehat {DLB}\) (đối đỉnh)

Suy ra (g.g)

Suy ra \(\frac{{EL}}{{LB}} = \frac{{KL}}{{LD}}\).

Xét \(\Delta EBL\)\(\Delta KDL\) có:  \(\frac{{EL}}{{LB}} = \frac{{KL}}{{LD}}\) (cmt) và \(\widehat {ELB} = \widehat {DLK}\) (2 góc đối đỉnh)

Suy ra (g.g)

Suy ra \(\widehat {DKL} = \widehat {BEL} = 90^\circ \) hay \(DK \bot BH\) tại \(K\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tiền cô Hương dùng để mua trái phiếu doanh nghiệp là \(x\) (triều đồng) \(\left( {0 \le x \le 400} \right)\).

Khi đó, số tiền cô Hương dùng để mua trái phiếu chính phủ là \(400 - x\) (triệu đồng)

Số tiền lãi cô Hương nhận được từ trái phiếu doanh nghiệp là \(8\% .x\) hay \(0,08x\) (triệu đồng)

Số tiền lãi thu được từ trái phiếu chính phủ là \(0,06.\left( {400 - x} \right)\) (triệu đồng)

Theo đề, ta có phương trình \(0,08x + 0,06\left( {400 - x} \right) = 29\).

Giải phương trình, ta được: \(0,08x + 0,06\left( {400 - x} \right) = 29\)

                                             \(0,08x + 24 - 0,06x = 29\)

                                             \(0,02x + 24 = 29\)

                                             \(0,02x = 5\)

                                              \(x = 250\) (thỏa mãn)

Do đó, số tiền mua trái phiếu chính phủ của cô Hương là: \(400 - 250 = 150\) (triệu đồng)

Vậy cô Hương đã dùng \(250\) triệu đồng để mua trái phiếu doanh nghiệp, còn \(150\) triệu đồng để mua trái phiếu chính phủ.

Lời giải

Đáp án: \(24,6\)

Tổng sản lượng thủy sản nước ta qua các năm là:

\(5{\rm{ }}204,5 + 6{\rm{ }}420,5 + 6{\rm{ }}924,4 + 7{\rm{ }}885,9 + 8{\rm{ }}635,7 = 35{\rm{ }}071\) (nghìn tấn)

Sản lượng thủy sản của nước ta năm 2020 so với tổng sản lượng thủy sản của nước ta qua các năm chiếm số phần trăm là: \(\frac{{8{\rm{ }}635,7}}{{35{\rm{ }}071}}.100\% \approx 24,6\% \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP