Câu hỏi:
18/03/2025 236(1,5 điểm) Cho tam giác \(ABC\) nhọn \(\left( {AB < AC} \right)\), đường cao \(AD{\rm{ }}\left( {D \in BC} \right)\). Gọi \(E,F\) lần lượt là hình chiếu của \(D\) trên \(AB\) và \(AC\).
a) Chứng minh \(AE.AB = A{D^2} = AF.AC\) và \(\widehat {AFE} = \widehat {ABC}\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Xét \(\Delta AED\) và \(\Delta ADB\) có:
\(\widehat A\) chung
\(\widehat {AED} = \widehat {ADB} = 90^\circ \)
Suy ra (g.g)
Suy ra \(\frac{{AE}}{{AD}} = \frac{{AD}}{{AB}}\), suy ra \(AE.AB = A{D^2}\) (1)
Xét \(\Delta AFD\) và \(\Delta ADC\) có:
\(\widehat A\) chung
\(\widehat {AFD} = \widehat {ADC} = 90^\circ \) (gt)
Suy ra (g.g)
Suy ra \(\frac{{AF}}{{AD}} = \frac{{AD}}{{AC}}\) suy ra \(AF.AC = A{D^2}\) (2)
Từ (1) và (2) suy ra \(AE.AB = A{D^2} = AF.AC.\)
Do đó, \(\frac{{AE}}{{AF}} = \frac{{AC}}{{AB}}\).
Xét \(\Delta AEF\) và \(\Delta ACB\)có:
\(\widehat A\) chung
\(\frac{{AE}}{{AF}} = \frac{{AC}}{{AB}}\) (cmt)
Suy ra (c.g.c)
Suy ra \(\widehat {AEF} = \widehat {ACB}\).
Câu hỏi cùng đoạn
Câu 2:
b) Gọi \(I\) là giao điểm của \(FE\) và tia \(CB\). Chứng minh \(I{D^2} = IE.IF\).
Lời giải của GV VietJack
Vì (cmt) suy ra \(\widehat {AEF} = \widehat {ACB}\).
Mà \(\widehat {AEF} = \widehat {IEB}\) (2 góc đối đỉnh)
Suy ra \(\widehat {ACB} = \widehat {IEB}\) (3)
Ta có: \(\widehat {IDF} = \widehat {DFC} + \widehat {ACB}\) (góc ngoài tam giác \(DFC\))
Suy ra \(\widehat {IDF} = 90^\circ + \widehat {ACB}\) (4)
Và \(\widehat {IED} = \widehat {IEB} + \widehat {BED} = \widehat {IEB} + 90^\circ \) (5)
Từ (3), (4), (5) suy ra \(\widehat {IDF} = \widehat {IED}\).
Xét \(\Delta IED\) và \(\Delta IDF\) có:
\(\widehat I\) chung
\(\widehat {IED} = \widehat {IDF}\) (cmt)
Suy ra (g.g)
Suy ra \(\frac{{IE}}{{ID}} = \frac{{ID}}{{IF}}\) nên \(I{D^2} = IE.IF\) (đpcm)
Câu 3:
c) Gọi \(H\) là trực tâm của \(\Delta ABC,\) tia \(HB\) cắt \(EF\) tại \(K.\) Chứng minh \(DK \bot BH.\)
Lời giải của GV VietJack
Vì \(H\) là trực tâm của \(\Delta ABC\) nên \(BH \bot AC\).
Mà \(DF \bot AC\) nên \(BH\parallel DF\), suy ra \(\widehat {EFD} = \widehat {EKB}\) (hai góc đồng vị) (6)
Theo câu b) ta có nên \(\widehat {IDE} = \widehat {IFD}\) suy ra \(\widehat {BDE} = \widehat {EFD}\) (7)
Từ (6) và (7) suy ra \(\widehat {EKB} = \widehat {BDE}\).
Gọi \(L\) là giao điểm của \(BK\) và \(ED\).
Xét \(\Delta EKL\) và \(\Delta BDL\) có:
\(\widehat {EKL} = \widehat {LDB}\) (cmt)
\(\widehat {ELK} = \widehat {DLB}\) (đối đỉnh)
Suy ra (g.g)
Suy ra \(\frac{{EL}}{{LB}} = \frac{{KL}}{{LD}}\).
Xét \(\Delta EBL\) và \(\Delta KDL\) có: \(\frac{{EL}}{{LB}} = \frac{{KL}}{{LD}}\) (cmt) và \(\widehat {ELB} = \widehat {DLK}\) (2 góc đối đỉnh)
Suy ra (g.g)
Suy ra \(\widehat {DKL} = \widehat {BEL} = 90^\circ \) hay \(DK \bot BH\) tại \(K\).
Đã bán 212
Đã bán 374
Đã bán 287
Đã bán 361
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
B. TỰ LUẬN (3,0 điểm)
(1,0 điểm) Cô Hương đầu tư \(400\) triệu đồng vào hai khoản: mua trái phiếu doanh nghiệp với lãi suất \(8\% \) một năm và mua trái phiếu chính phủ với lãi suất \(6\% \) một năm. Cuối năm cô Hương nhận được \(29\) triệu đồng tiền lãi. Hỏi cô Hương đã đầu tư vào mỗi khoản bao nhiêu tiền?
Câu 2:
Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn
Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Biểu đồ đoạn thẳng dưới đây biểu diễn sản lượng thủy sản của nước ta qua các năm 2010; 2014; 2016; 2018; 2020 (đơn vị: nghìn tấn).
(Nguồn: Niên giám thống kê 2021)
Hỏi sản lượng thủy sản của nước ta năm 2020 chiếm bao nhiêu phần trăm tổng sản lượng thủy sản của nước ta qua các năm? (Kết quả làm tròn đến hàng phần mười)
Câu 4:
a) Dữ liệu ở biểu đồ trên được thu thập bằng phương pháp thu thập gián tiếp.
Câu 5:
A. TRẮC NGHIỆM (7,0 điểm)
Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn
Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.
Trong các nhận định sau, nhận định nào đúng?
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận