Câu hỏi:

11/04/2025 67

Câu 28-30. (1,5 điểm) Cho tam giác \(ABC\) cân tại \(B,\widehat {ABC} = 80^\circ \). Lấy điểm \(I\) ở bên trong tam giác sao cho \(\widehat {IAC} = 10^\circ ,\widehat {ICA} = 30^\circ .\) Đường phân giác của \(\widehat {BAI}\) cắt đường thẳng \(CI\) tại \(K\)

a) Chứng minh tam giác \(ACK\) cân tại \(K.\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh tam giác \(ACK\) cân tại \(K.\) (ảnh 1)

a) Vì tam giác \(ABC\) cân tại \(B,\)\(\widehat {ABC} = 80^\circ \) nên \(\widehat {BAC} = \widehat {ACB} = \frac{{180^\circ - 80^\circ }}{2} = 50^\circ \).

Ta có \(\widehat {IAC} = 10^\circ \) nên \(\widehat {IAB} = \widehat {CAB} - \widehat {IAC} = 50^\circ - 10^\circ = 40^\circ \).

\(AK\) là đường phân giác của \(\widehat {IAB}\) nên \(\widehat {BAK} = \widehat {KAI} = 20^\circ \).

Do đó, \(\widehat {KAC} = \widehat {KAI} + \widehat {IAC} = 20^\circ + 10^\circ = 30^\circ = \widehat {KCA}\)

Suy ra \(\widehat {CAK} = \widehat {KAC} = 30^\circ \) nên \(\Delta ACK\) cân tại \(K.\)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh \(\Delta ABK = \Delta CBK\). Suy ra \(BK\) là phân giác của góc \(ABC\).

Xem lời giải

verified Lời giải của GV VietJack

b) Có \(\Delta ACK\) cân tại \(K\) nên \(KA = KC.\)

Xét \(\Delta ABK\)\(\Delta CBK\) có: \(AB = BC\) (gt), \(BK\) chung, \(KA = KC\).

Do đó, \(\Delta ABK = \Delta CBK\) (c.c.c).

Suy ra \(\widehat {ABK} = \widehat {CBK}\) (hai góc tương ứng).

Do đó, \(BK\) là phân giác của góc \(ABC\).

Câu 3:

c) Tính số đo \(\widehat {AIB}\).

Xem lời giải

verified Lời giải của GV VietJack

c) Từ b) \(\Delta ABK = \Delta CBK\) (c.c.c) nên \(\widehat {AKB} = \widehat {CKB}\) (hai góc tương ứng)

\(BK\) là phân giác của góc \(ABC\) nên \(\widehat {ABK} = \widehat {CBK} = \frac{{\widehat {ABC}}}{2} = 40^\circ \).

Do đó, \(\widehat {AKB} = \widehat {CKB} = 180^\circ - \left( {\widehat {KAB} + \widehat {KBA}} \right) = 180^\circ - \left( {40^\circ + 20^\circ } \right) = 120^\circ \).

Lại có \(\widehat {AKB} + \widehat {CKB} + \widehat {AKC} = 360^\circ \) nên \(\widehat {CKA} = 360^\circ - 2.120^\circ = 120^\circ \).

Do đó, \(\widehat {AKB} = \widehat {CKB} = \widehat {CKA}\).

Xét \(\Delta AKB\)\(\Delta AKI\), có: \(\widehat {KAB} = \widehat {KAI}\) (gt); \(AK\) chung (gt); \(\widehat {AKB} = \widehat {CKA}\) (cmt)

Do đó, \(\Delta AKB = \Delta AKI\) (g.c.g)

Suy ra \(AB = AI\) (hai cạnh tương ứng)

Do đó, \(\Delta AIB\) cân tại \(A\) nên \(\widehat {ABI} = \widehat {AIB} = \frac{{180^\circ - \widehat {BAI}}}{2} = \frac{{180^\circ - 40^\circ }}{2} = 70^\circ \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

 a) \(\Delta ABM = \Delta AMC.\)

Xem đáp án » 11/04/2025 149

Câu 2:

 a) Biến cố “Mặt xuất hiện có số chấm nhỏ hơn 8” là biến cố chắc chắn.

Xem đáp án » 11/04/2025 77

Câu 3:

a) Tính \(A\left( x \right) + B\left( x \right).\)

Xem đáp án » 11/04/2025 69

Câu 4:

Khẳng định nào sau đây là đúng?

Xem đáp án » 11/04/2025 35

Câu 5:

Cho hai đa thức \(P\left( x \right) = {x^2} + 2mx + {m^2}\)\(Q\left( x \right) = {x^2} + 2\left( {m + 1} \right)x + {m^2}\). Tìm giá trị của \(m\) biết \(P\left( { - 2} \right) = Q\left( 2 \right)\).

Xem đáp án » 11/04/2025 32

Câu 6:

Biểu thức \(A = 2{\left( {x + 1} \right)^2} + \left| { - 3\left( {{x^2} - 1} \right)} \right|\) đạt giá trị nhỏ nhất khi \(x\) có giá trị bằng bao nhiêu?

Xem đáp án » 11/04/2025 31
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua