Câu hỏi:
11/04/2025 211Câu 28-30. (1,5 điểm) Cho tam giác \(ABC\) cân tại \(B,\widehat {ABC} = 80^\circ \). Lấy điểm \(I\) ở bên trong tam giác sao cho \(\widehat {IAC} = 10^\circ ,\widehat {ICA} = 30^\circ .\) Đường phân giác của \(\widehat {BAI}\) cắt đường thẳng \(CI\) tại \(K\)
a) Chứng minh tam giác \(ACK\) cân tại \(K.\)
Quảng cáo
Trả lời:
a) Vì tam giác \(ABC\) cân tại \(B,\) có \(\widehat {ABC} = 80^\circ \) nên \(\widehat {BAC} = \widehat {ACB} = \frac{{180^\circ - 80^\circ }}{2} = 50^\circ \).
Ta có \(\widehat {IAC} = 10^\circ \) nên \(\widehat {IAB} = \widehat {CAB} - \widehat {IAC} = 50^\circ - 10^\circ = 40^\circ \).
Mà \(AK\) là đường phân giác của \(\widehat {IAB}\) nên \(\widehat {BAK} = \widehat {KAI} = 20^\circ \).
Do đó, \(\widehat {KAC} = \widehat {KAI} + \widehat {IAC} = 20^\circ + 10^\circ = 30^\circ = \widehat {KCA}\)
Suy ra \(\widehat {CAK} = \widehat {KAC} = 30^\circ \) nên \(\Delta ACK\) cân tại \(K.\)
Câu hỏi cùng đoạn
Câu 2:
b) Chứng minh \(\Delta ABK = \Delta CBK\). Suy ra \(BK\) là phân giác của góc \(ABC\).
Lời giải của GV VietJack
b) Có \(\Delta ACK\) cân tại \(K\) nên \(KA = KC.\)
Xét \(\Delta ABK\) và \(\Delta CBK\) có: \(AB = BC\) (gt), \(BK\) chung, \(KA = KC\).
Do đó, \(\Delta ABK = \Delta CBK\) (c.c.c).
Suy ra \(\widehat {ABK} = \widehat {CBK}\) (hai góc tương ứng).
Do đó, \(BK\) là phân giác của góc \(ABC\).
Câu 3:
c) Tính số đo \(\widehat {AIB}\).
Lời giải của GV VietJack
c) Từ b) \(\Delta ABK = \Delta CBK\) (c.c.c) nên \(\widehat {AKB} = \widehat {CKB}\) (hai góc tương ứng)
Có \(BK\) là phân giác của góc \(ABC\) nên \(\widehat {ABK} = \widehat {CBK} = \frac{{\widehat {ABC}}}{2} = 40^\circ \).
Do đó, \(\widehat {AKB} = \widehat {CKB} = 180^\circ - \left( {\widehat {KAB} + \widehat {KBA}} \right) = 180^\circ - \left( {40^\circ + 20^\circ } \right) = 120^\circ \).
Lại có \(\widehat {AKB} + \widehat {CKB} + \widehat {AKC} = 360^\circ \) nên \(\widehat {CKA} = 360^\circ - 2.120^\circ = 120^\circ \).
Do đó, \(\widehat {AKB} = \widehat {CKB} = \widehat {CKA}\).
Xét \(\Delta AKB\) và \(\Delta AKI\), có: \(\widehat {KAB} = \widehat {KAI}\) (gt); \(AK\) chung (gt); \(\widehat {AKB} = \widehat {CKA}\) (cmt)
Do đó, \(\Delta AKB = \Delta AKI\) (g.c.g)
Suy ra \(AB = AI\) (hai cạnh tương ứng)
Do đó, \(\Delta AIB\) cân tại \(A\) nên \(\widehat {ABI} = \widehat {AIB} = \frac{{180^\circ - \widehat {BAI}}}{2} = \frac{{180^\circ - 40^\circ }}{2} = 70^\circ \).
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
a) Biến cố “Mặt xuất hiện có số chấm nhỏ hơn 8” là biến cố chắc chắn.
Câu 5:
Cho hai đa thức \(P\left( x \right) = {x^2} + 2mx + {m^2}\) và \(Q\left( x \right) = {x^2} + 2\left( {m + 1} \right)x + {m^2}\). Tìm giá trị của \(m\) biết \(P\left( { - 2} \right) = Q\left( 2 \right)\).
Câu 6:
Cho tam giác nhọn \(ABC\). Kẻ \(AD \bot BC{\rm{ }}\left( {D \in BC} \right)\) và \(BE \bot AC{\rm{ }}\left( {E \in AC} \right)\). Gọi \(H\) là giao điểm của \(AD\) và \(BE\). Biết rằng \(AH = BC\), hỏi số đo \(\widehat {BAC}\) bằng bao nhiêu độ?
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 5 đề thi Giữa kì 2 Toán 7 Cánh diều cấu trúc mới có đáp án - Đề 01
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận