Câu hỏi:

11/04/2025 358 Lưu

Câu 28-30. (1,5 điểm) Cho tam giác \(ABC\) cân tại \(B,\widehat {ABC} = 80^\circ \). Lấy điểm \(I\) ở bên trong tam giác sao cho \(\widehat {IAC} = 10^\circ ,\widehat {ICA} = 30^\circ .\) Đường phân giác của \(\widehat {BAI}\) cắt đường thẳng \(CI\) tại \(K\)

a) Chứng minh tam giác \(ACK\) cân tại \(K.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Chứng minh tam giác \(ACK\) cân tại \(K.\) (ảnh 1)

a) Vì tam giác \(ABC\) cân tại \(B,\)\(\widehat {ABC} = 80^\circ \) nên \(\widehat {BAC} = \widehat {ACB} = \frac{{180^\circ - 80^\circ }}{2} = 50^\circ \).

Ta có \(\widehat {IAC} = 10^\circ \) nên \(\widehat {IAB} = \widehat {CAB} - \widehat {IAC} = 50^\circ - 10^\circ = 40^\circ \).

\(AK\) là đường phân giác của \(\widehat {IAB}\) nên \(\widehat {BAK} = \widehat {KAI} = 20^\circ \).

Do đó, \(\widehat {KAC} = \widehat {KAI} + \widehat {IAC} = 20^\circ + 10^\circ = 30^\circ = \widehat {KCA}\)

Suy ra \(\widehat {CAK} = \widehat {KAC} = 30^\circ \) nên \(\Delta ACK\) cân tại \(K.\)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh \(\Delta ABK = \Delta CBK\). Suy ra \(BK\) là phân giác của góc \(ABC\).

Xem lời giải

verified Giải bởi Vietjack

b) Có \(\Delta ACK\) cân tại \(K\) nên \(KA = KC.\)

Xét \(\Delta ABK\)\(\Delta CBK\) có: \(AB = BC\) (gt), \(BK\) chung, \(KA = KC\).

Do đó, \(\Delta ABK = \Delta CBK\) (c.c.c).

Suy ra \(\widehat {ABK} = \widehat {CBK}\) (hai góc tương ứng).

Do đó, \(BK\) là phân giác của góc \(ABC\).

Câu 3:

c) Tính số đo \(\widehat {AIB}\).

Xem lời giải

verified Giải bởi Vietjack

c) Từ b) \(\Delta ABK = \Delta CBK\) (c.c.c) nên \(\widehat {AKB} = \widehat {CKB}\) (hai góc tương ứng)

\(BK\) là phân giác của góc \(ABC\) nên \(\widehat {ABK} = \widehat {CBK} = \frac{{\widehat {ABC}}}{2} = 40^\circ \).

Do đó, \(\widehat {AKB} = \widehat {CKB} = 180^\circ - \left( {\widehat {KAB} + \widehat {KBA}} \right) = 180^\circ - \left( {40^\circ + 20^\circ } \right) = 120^\circ \).

Lại có \(\widehat {AKB} + \widehat {CKB} + \widehat {AKC} = 360^\circ \) nên \(\widehat {CKA} = 360^\circ - 2.120^\circ = 120^\circ \).

Do đó, \(\widehat {AKB} = \widehat {CKB} = \widehat {CKA}\).

Xét \(\Delta AKB\)\(\Delta AKI\), có: \(\widehat {KAB} = \widehat {KAI}\) (gt); \(AK\) chung (gt); \(\widehat {AKB} = \widehat {CKA}\) (cmt)

Do đó, \(\Delta AKB = \Delta AKI\) (g.c.g)

Suy ra \(AB = AI\) (hai cạnh tương ứng)

Do đó, \(\Delta AIB\) cân tại \(A\) nên \(\widehat {ABI} = \widehat {AIB} = \frac{{180^\circ - \widehat {BAI}}}{2} = \frac{{180^\circ - 40^\circ }}{2} = 70^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đ

a) Khi gieo một con xúc xắc 6 mặt cân đối, các kết quả có thể xảy ra là: xuất hiện mặt 1 chấm, mặt 2 chấm, mặt 3 chấm, mặt 4 chấm, mặt 5 chấm, mặt 6 chấm.

Các mặt xúc xắc có số chấm nhỏ hơn 8 nên biến cố “Mặt xuất hiện có số chấm nhỏ hơn 8” là biến cố chắc chắn.

Lời giải

S

 a) \(\Delta ABM = \Delta AMC.\) (ảnh 1)

a) Xét \(\Delta ABM\)\(\Delta AMC\) có:

\(AM\) chung (gt)

\(\widehat {CAM} = \widehat {MAB}\) (gt)

\(AB = AC\) (gt)

Do đó, \(\Delta ABM = \Delta ACM\) (c.g.c).

Câu 3

A. Ba đường cao trong tam giác luôn đồng quy tại một điểm.
B. Ba đường cao trong tam giác luôn vuông góc với nhau.
C. Ba đường cao trong tam giác không đồng quy tại một điểm.
D. Ba đương cao trong tam giác luôn song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP