Câu hỏi:

12/04/2025 62

 Giải bài toán sau bằng cách lập phương trình:

     Hai vòi nước cùng chảy vào một bể thì \(6\) giờ đầy bể. Nếu mở vòi chảy một mình cho đầy bể thì vòi thứ hai cấn nhiều hơn vòi thứ nhất \(5\) giờ. Tính thời gian để mỗi vòi chảy một mình đầy bể.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi thời gian để vòi thứ nhất chảy đầy bể là \(x\) (giờ) \[\left( {x > 0} \right)\].

Khi đó, thời gian để vòi thứ hai chảy đầy bể \(x + 5\) (giờ).

Khi đó, mỗi giờ vòi thứ nhất chảy được \(\frac{1}{x}\) bể; vòi thứ hai chảy dược: \(\frac{1}{{x + 5}}\) bể và cả hai vòi chảy được \(\frac{1}{6}\) bể.

Theo đề bài, ta có phương trình: \(\frac{1}{x} + \frac{1}{{x + 5}} = \frac{1}{6}\)

\(\frac{{6\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}} + \frac{{6x}}{{6x\left( {x + 5} \right)}} = \frac{{x\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}}\)

\(6\left( {x + 5} \right) + 6x = x\left( {x + 5} \right)\)

\({x^2} - 7x - 30 = 0\)
\(x = 10\) (TMĐK) hoặc \(x = - 3\) (loại).

Vậy: Vòi thứ nhất chảy đầy bể trong 10 giờ.

Vòi thứ hai chảy đầy bế trong 15 giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

2. a) Vì \(CK \bot AK\) nên \(\widehat {AKC} = 90^\circ .\) Vì \(CH \bot AB\) tại \[H\] nên \(\widehat {AHC} = 90^\circ .\)

Gọi \(I\)là trung điểm \(AC\).

\(\Delta AKC\)\(KI\) là trung tuyến ứng với cạnh huyền \(AC\) nên \(KI = OA = OC = \frac{1}{2}AC.\)

\(\Delta AHC\)\(HI\) là trung tuyến ứng với cạnh huyền\(AC\) nên \(HI = IA = IC = \frac{1}{2}AC.\)

Do đó \(IA = IK = IC = IH.\)

Vậy bốn điểm \(A,\,\,H,\,\,C,\,\,K\) cùng nằm trên cùng một đường tròn tâm \(I\) hay tứ giác \[AHCK\] nội tiếp.
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp. (ảnh 1)

 

Lời giải

a) Thể tích nước trong cốc là:

\({V_1} = \pi {r^2}\;h = \pi \cdot {12^2} \cdot 10 = 1440\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)

Vậy thể tích nước trong cốc là \(1440\pi \,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)

Câu 3

a) Tính hằng số \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP