Câu 9-11. Cho đường tròn \[\left( O \right)\] đường kính \[AB.\] Gọi \[H\] là điểm nằm giữa \[O\] và \[B.\] Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H.\] Trên cung nhỏ \[AC\] lấy điểm \[E\] bất kỳ \[\left( E \right.\] khác \[A\] và \[\left. C \right).\] Kẻ \[CK\] vuông góc với \[AE\] tại \[K.\] Đường thẳng \[DE\] cắt \[CK\] tại \[F.\]
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp.
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp.
Quảng cáo
Trả lời:
|
2. a) Vì \(CK \bot AK\) nên \(\widehat {AKC} = 90^\circ .\) Vì \(CH \bot AB\) tại \[H\] nên \(\widehat {AHC} = 90^\circ .\) Gọi \(I\)là trung điểm \(AC\). \(\Delta AKC\)có \(KI\) là trung tuyến ứng với cạnh huyền \(AC\) nên \(KI = OA = OC = \frac{1}{2}AC.\) \(\Delta AHC\) có \(HI\) là trung tuyến ứng với cạnh huyền\(AC\) nên \(HI = IA = IC = \frac{1}{2}AC.\) Do đó \(IA = IK = IC = IH.\) Vậy bốn điểm \(A,\,\,H,\,\,C,\,\,K\) cùng nằm trên cùng một đường tròn tâm \(I\) hay tứ giác \[AHCK\] nội tiếp.
|
![]() |
Câu hỏi cùng đoạn
Câu 2:
b) Chứng minh \[KH\] song song với \[ED\] và tam giác \[ACF\] là tam giác cân.
b) Chứng minh \[KH\] song song với \[ED\] và tam giác \[ACF\] là tam giác cân.
b) Vì \[AHCK\] là tứ giác nội tiếp nên \(\widehat {CHK} = \widehat {CAK} = \widehat {CAE}\) (góc nội tiếp cùng chắn cung \[KC).\]
Lại có \[ADCE\]nội tiếp nên \(\widehat {CAE} = \widehat {CDE}\) (góc nội tiếp cùng chắn cung \[EC).\]
Từ đó suy ra \(\widehat {CHK} = \widehat {CDE}\) nên \(HK\,{\rm{//}}\,DE\) (đpcm).
Do \(HK\,{\rm{//}}\,DE\), mà \[H\] là trung điểm \[CD\] (quan hệ vuông góc của đường kính \[AB\] với dây \[CD\] tại \[H).\]
Suy ra \[HK\] là đường trung bình của tam giác \[CDF\] nên \[K\] là trung điểm \[FC\].
Tam giác \[AFC\] có \[AK\] là đường cao đồng thời cũng là trung tuyến.
Do đó tam giác \[CAF\]là tam giác cân tại \[K\] (đpcm).
Câu 3:
c) Tìm vị trí của điểm \[E\] để diện tích tam giác \[ADF\] lớn nhất.
c) Tìm vị trí của điểm \[E\] để diện tích tam giác \[ADF\] lớn nhất.
c) Tam giác \[FAC\] cân tại \[A\] nên \[AF = AC.\]
Dễ thấy tam giác \[ACD\] cân tại \[A\] nên \[AC = AD\].
Từ đó suy ra \[AF = AD\] hay tam giác \[AFD\] cân tại \[A\], hạ \[DI \bot AF\] .
Ta có \({S_{AFD}} = \frac{1}{2}DI \cdot AF = \frac{1}{2}DI \cdot AC\).
Do \[AC\] không đổi nên \({S_{AFD}}\) lớn nhất khi và chỉ khi \[DI\] lớn nhất.
Trong tam giác vuông \[AID\] ta có:
\(ID \le AD = AC\) hay \({S_{AFD}} = \frac{1}{2}DI \cdot AF = \frac{1}{2}DI \cdot AC \le \frac{{A{C^2}}}{2}\).
Dấu xảy ra khi và chỉ khi \(I \equiv A\), khi đó \[\widehat {DAF} = 90^\circ \] nên tam giác \[ADF\] vuông cân tại \[A\], suy ra \(\widehat {EBA} = \widehat {EDA} = 45^\circ \) hay \[E\] là điểm chính giữa cung \[AB.\]
Vậy để diện tích tam giác \[ADF\] lớn nhất thì \[E\] là điểm chính giữa cung \[AB.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Thể tích nước trong cốc là:
\({V_1} = \pi {r^2}\;h = \pi \cdot {12^2} \cdot 10 = 1440\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)
Vậy thể tích nước trong cốc là \(1440\pi \,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)
Lời giải
a) Thay \(v = 2,\,\,F = 120\) vào công thức \(F = a{v^2}\), ta được \(120 = a \cdot {2^2}\)
Khi đó \(4a = 120\) nên \(a = 30.\)
Vậy hằng số \(a = 30\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/04/16-1744434470.png)