Câu hỏi:

21/04/2025 543

Câu 12-13.(1,5 điểm)

Khi xây móng nhà, để kiểm tra xem hai phần móng có vuông góc với nhau hay không, người thợ xây thường lấy \[AB = 3\,\,{\rm{cm}},{\rm{ }}AC = 4\,\,{\rm{cm}}\] \[(A\] là điểm chung của hai phần móng nhà hay còn gọi là góc nhà), rồi đo đoạn \[BC\] nếu \[BC = 5\,\,{\rm{cm}}\] thì hai phần móng đó vuông góc với nhau. Hãy giải thích vì sao?
A (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét tam giác \[ABC\] ta có:

\(B{C^2} = {5^2} = 25;\) \(A{B^2} + A{C^2} = {3^2} + {4^2} = 25\)

Do đó \(B{C^2} = A{B^2} + A{C^2}.\)

Theo định lý Pythagore đảo thì tam giác \[ABC\] vuông tại \[A.\]

Vậy hai phần móng đó vuông góc với nhau.

Câu hỏi cùng đoạn

Câu 2:

Một chậu cây cảnh mini có hình dạng là một hình chóp tứ giác đều có chiều cao bằng \(35\,\,{\rm{cm}}\), cạnh đáy bằng \(24\,\,{\rm{cm}}\). Tính độ dài trung đoạn của chậu cây cảnh.
D (ảnh 1)

Xem lời giải

verified Lời giải của GV VietJack

D (ảnh 2)

Ta có \(SE\) là trung đoạn nên \(E\) là trung điểm của \(AB\).

Xét \(\Delta ABD\)\(E,\,\,H\) lần lượt là trung điểm của \(AB,\,\,BD\).   

Do đó \(EH\) là đường trung bình của \(\Delta ABD\) nên \(EH = \frac{1}{2}AD = 12\,\,\left( {{\rm{cm}}} \right)\).

Xét \(\Delta SEH\) vuông tại \(H\) có: \(S{E^2} = S{H^2} + E{H^2}\)

\(S{E^2} = {35^2} + {12^2}\)

\(SE = 37\,\,{\rm{cm}}\).

Vậy độ dài trung đoạn của chậu cây cảnh là 37 cm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chiếc bút thứ nhất chọn \[1\] trong số \[15\] chiếc bút nên có \[15\] cách.

Chiếc bút thứ hai chọn \[1\] trong \[14\] chiếc bút còn lại nên có \[14\] cách.

Số cách chọn \[2\] chiếc bút là \[\frac{{15 \cdot 14}}{2} = 105\] (cách) (cứ mỗi cặp bị lăp lại 2 lần).

Chiếc bút chì chọn \[1\] trong \[3\] chiếc nên có 3 cách.

Chiếc thứ hai chọn \[1\] trong \[12\] chiếc bút mực nên có \[12\] cách.

Số cách chọn ra \(2\) chiếc bút trong đó có \(1\) chiếc bút chì và một chiếc bút mực là \[3 \cdot 12 = 36\] (cách).

Xác suất của biến cố: Bạn Tú lấy được \(1\) chiếc bút chì và \(1\) chiếc bút mực\(\frac{{36}}{{105}} = \frac{{12}}{{35}}\).

Lời giải

Trong 50 lần thử, số lần gieo được mặt có số chấm là số chẵn là:

\[9 + 5 + 13 = 27\] (lần).

Vậy số lần gieo được mặt có số chấm là số chẵn là 27.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay