Một hộp có 30 quả bóng được đánh số từ 1 đến 30, đồng thời các quả bóng từ 1 đến 10 được sơn màu cam và các quả bóng còn lại được sơn màu xanh. Các quả bóng có kích cỡ và khối lượng như nhau. Lấy ngẫu nhiên một quả bóng trong hộp. Số kết quả thuận lợi của biến cố: “Quả bóng được lấy ra được sơn màu cam” là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Số kết quả thuận lợi của biến cố “Quả bóng được lấy ra có màu cam” là 10 (là các quả bóng được đánh số từ 1 đến 10).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
S
a) Điều kiện để hàm số trên là hàm số bậc nhất là \(2 - m \ne 0\) suy ra \(m \ne 2\).
Lời giải
Hướng dẫn giải
Ta có: \[1 - \frac{1}{{{k^2}}} = \frac{{{k^2} - 1}}{{{k^2}}} = \frac{{\left( {k - 1} \right)\left( {k + 1} \right)}}{{{k^2}}}\].
Do đó, ta có: \[C = \left( {1 - \frac{1}{{{2^2}}}} \right).\left( {1 - \frac{1}{{{3^2}}}} \right).\left( {1 - \frac{1}{{{4^2}}}} \right).....\left( {1 - \frac{1}{{{n^2}}}} \right)\]
\[C = \frac{{1.3}}{{{2^2}}}.\frac{{2.4}}{{{3^2}}}.\frac{{3.5}}{{{4^2}}}....\frac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{{n^2}}}\]
\[C = \frac{{1.3.2.4.3.5.....\left( {n - 1} \right)\left( {n + 1} \right)}}{{{2^2}{{.3}^2}{{.4}^2}.....{n^2}}}\]
\[C = \frac{{1.2.3.....\left( {n - 1} \right)}}{{2.3.4.....\left( {n - 1} \right)n}}.\frac{{3.4.5.....\left( {n + 1} \right)}}{{2.3.4....n}}\]
\[C = \frac{1}{n}.\frac{{n + 1}}{2} = \frac{{n + 1}}{{2n}}\].
Vậy \[C = \frac{{n + 1}}{{2n}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.