Câu hỏi:

22/04/2025 1,187 Lưu

Một hộp có 30 quả bóng được đánh số từ 1 đến 30, đồng thời các quả bóng từ 1 đến 10 được sơn màu cam và các quả bóng còn lại được sơn màu xanh. Các quả bóng có kích cỡ và khối lượng như nhau. Lấy ngẫu nhiên một quả bóng trong hộp. Số kết quả thuận lợi của biến cố: “Quả bóng được lấy ra được sơn màu cam” là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Số kết quả thuận lợi của biến cố “Quả bóng được lấy ra có màu cam” là 10 (là các quả bóng được đánh số từ 1 đến 10).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

S

a) Điều kiện để hàm số trên là hàm số bậc nhất là \(2 - m \ne 0\) suy ra \(m \ne 2\).

Lời giải

Hướng dẫn giải

Ta có: \[1 - \frac{1}{{{k^2}}} = \frac{{{k^2} - 1}}{{{k^2}}} = \frac{{\left( {k - 1} \right)\left( {k + 1} \right)}}{{{k^2}}}\].

Do đó, ta có: \[C = \left( {1 - \frac{1}{{{2^2}}}} \right).\left( {1 - \frac{1}{{{3^2}}}} \right).\left( {1 - \frac{1}{{{4^2}}}} \right).....\left( {1 - \frac{1}{{{n^2}}}} \right)\]

                      \[C = \frac{{1.3}}{{{2^2}}}.\frac{{2.4}}{{{3^2}}}.\frac{{3.5}}{{{4^2}}}....\frac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{{n^2}}}\]

                      \[C = \frac{{1.3.2.4.3.5.....\left( {n - 1} \right)\left( {n + 1} \right)}}{{{2^2}{{.3}^2}{{.4}^2}.....{n^2}}}\]

                     \[C = \frac{{1.2.3.....\left( {n - 1} \right)}}{{2.3.4.....\left( {n - 1} \right)n}}.\frac{{3.4.5.....\left( {n + 1} \right)}}{{2.3.4....n}}\]

                     \[C = \frac{1}{n}.\frac{{n + 1}}{2} = \frac{{n + 1}}{{2n}}\].

Vậy \[C = \frac{{n + 1}}{{2n}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP