Câu hỏi:

22/04/2025 68

\(\Delta ABC\) đồng dạng với \(\Delta DEF\) theo tỉ số \({k_1}\). \(\Delta DEF\) đồng dạng với \(\Delta GHK\) theo tỉ số \({k_2}\) thì \(\Delta ABC\) đồng dạng với \(\Delta GHK\) theo tỉ số

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \(\Delta ABC\) đồng dạng với \(\Delta DEF\) theo tỉ số \({k_1}\) nên \(\frac{{\Delta ABC}}{{\Delta DEF}} = {k_1}\).

\(\Delta DEF\) đồng dạng với \(\Delta GHK\) theo tỉ số \({k_2}\) nên \(\frac{{\Delta DEF}}{{\Delta DHK}} = {k_2}\).

Do đó, \(\Delta ABC\) đồng dạng với \(\Delta GHK\) theo tỉ số là \(\frac{{\Delta ABC}}{{\Delta DHK}} = \frac{{\Delta ABC}}{{\Delta DEF}}.\frac{{\Delta DEF}}{{\Delta DHK}} = {k_2}{k_1}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \(2\)

\(\left( {{d_1}} \right)\parallel \left( {{d_2}} \right)\) nên ta có: \(\left\{ \begin{array}{l}2 - {m^2} = 2{\rm{            (1)}}\\ - m - 5 \ne 2m + 1{\rm{    (2)}}\end{array} \right.\)

Giải (1) ta có: \(2 - {m^2} = 2\) nên \({m^2} = 4\), suy ra \(m = 2\) hoặc \(m = - 2.\)

Giải (2) ta có: \( - m - 5 \ne 2m + 1\) nên \( - m - 2m \ne 5 + 1\) hay \( - 3m \ne 6\) suy ra \(m \ne - 2\).

Do đó, giá trị thỏa mãn là \(m = 2\).

Lời giải

Đ

a) Với \(m = 0\) thì ta có: \(\left( {d'} \right):y = - 2x + 2.\)

Nhận thấy lúc này hai hệ số góc của hai đường thẳng khác nhau, do đó \(\left( d \right),\left( {d'} \right)\) cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP