Câu hỏi:
25/04/2025 36Ông sinh năm 1920, mất năm 2007; tên khai sinh là Nguyễn Văn Tài, quê ở làng Phù Lưu, xã Tân Hồng, huyện Từ Sơn, tỉnh Bắc Ninh. Do hoàn cảnh gia đình khó khăn, ông chỉ được học hết tiểu học, rồi vừa làm thợ sơn guốc, khắc tranh bình phong vừa viết văn. Năm 1944, ông tham gia Hội văn hóa cứu quốc, sau đó liên tục hoạt động văn nghệ phục vụ kháng chiến và cách mạng (viết văn, làm báo, diễn kịch, đóng phim).
Tác phẩm chính: Nên vợ nên chồng (tập truyện ngắn, 1955), Con chó xấu xí (tập truyện ngắn, 1962).
(Ngữ văn 12, tập hai, NXB Giáo dục Việt Nam, 2020)
Đoạn trích tiểu dẫn nói về nhà văn nào?Quảng cáo
Trả lời:
Đoạn trích tiểu dẫn nói về nhà văn Kim Lân. Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi biến cố X: “Phác đồ A chữa khỏi bệnh” và biến cố Y: “Phác đồ A gây tác dụng phụ nghiêm trọng”. Ta có \(P\left( X \right) = 0,6\) và \(P\left( Y \right) = 0,05\).
Gọi biến cố M: “Phác đồ B chữa khỏi bệnh” và biến cố N: “phác đồ B gây tác dụng phụ nghiêm trọng”. Ta có \(P\left( M \right) = 0,7\) và \(P\left( N \right) = 0,1\).
Xác suất sử dụng phác đồ A gây tác dụng phụ nghiêm trọng là \(P\left( Y \right) = 0,05\) và xác suất để chọn được phác đồ A là \(P\left( A \right) = 0,5\) nên xác suất chọn được phác đồ A và bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,5 \cdot 0,05 = 0,025\).
Xác suất sử dụng phác đồ B gây tác dụng phụ nghiêm trọng là \(P\left( N \right) = 0,1\) và xác suất để chọn được phác đồ B là \(P\left( B \right) = 0,5\) nên xác suất chọn được phác đồ B và bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,5 \cdot 0,1 = 0,05\).
Gọi biến C: “Bệnh nhân gặp tác dụng phụ nghiêm trọng” thì \(P\left( C \right) = 0,025 + 0,05 = 0,075\).
Chọn B.
Lời giải
Gọi D là biến cố “bệnh nhân được chữa khỏi bệnh”.
Suy ra \(P\left( D \right) = \frac{1}{2}\left( {P\left( X \right) + P\left( M \right)} \right) = 0,65\).
Gọi \(E\) là biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng”.
Suy ra \(P\left( E \right) = \frac{1}{2}\left( {P\left( {\overline Y } \right) + P\left( {\overline N } \right)} \right)\)\( = \frac{1}{2}\left( {0,95 + 0,9} \right) = 0,925\).
Vậy xác suất để bệnh nhân chữa khỏi bệnh và không bị tác dụng phụ nghiêm trọng là:
\(P\left( {D \cap E} \right) = P\left( D \right) \cdot P\left( E \right) = 0,60125\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 3)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 4)