Câu hỏi:
25/04/2025 34Trong trường hợp sau đây ngôn ngữ người nói/ người viết sử dụng có phù hợp với hoàn cảnh giao tiếp không? Dựa vào đâu bạn nhận xét như vậy?
“Chào thầy cô và các bạn. Mình rất vui khi được đại diện cho các bạn học sinh khối 12 phát biểu ý kiến trong buổi lễ Tổng kết ngày hôm nay”.
(Hoàn cảnh giao tiếp: Học sinh phát biểu trong Lễ Tổng kết năm học.)Quảng cáo
Trả lời:
Trong trường hợp: “Chào thầy cô và các bạn. Mình rất vui khi được đại diện cho các bạn học sinh khối 12 phát biểu ý kiến trong buổi lễ Tổng kết ngày hôm nay”, ngôn ngữ người nói chưa phù hợp với hoàn cảnh giao tiếp. Lí do: Người nghe ở đây không chỉ có các bạn mà có cả thầy, cô giáo. Học sinh chỉ sử dụng từ “chào” (không có chủ ngữ hoặc từ ngữ thể hiện sự kính trọng) với thầy cô là không thể hiện sự tôn kính dành cho người lớn tuổi và có vị trí cao hơn mình (nên thay bằng từ ngữ “kính chào”); từ xưng hô (“mình”) chưa phù hợp, nên thay bằng “tôi”. Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi biến cố X: “Phác đồ A chữa khỏi bệnh” và biến cố Y: “Phác đồ A gây tác dụng phụ nghiêm trọng”. Ta có \(P\left( X \right) = 0,6\) và \(P\left( Y \right) = 0,05\).
Gọi biến cố M: “Phác đồ B chữa khỏi bệnh” và biến cố N: “phác đồ B gây tác dụng phụ nghiêm trọng”. Ta có \(P\left( M \right) = 0,7\) và \(P\left( N \right) = 0,1\).
Xác suất sử dụng phác đồ A gây tác dụng phụ nghiêm trọng là \(P\left( Y \right) = 0,05\) và xác suất để chọn được phác đồ A là \(P\left( A \right) = 0,5\) nên xác suất chọn được phác đồ A và bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,5 \cdot 0,05 = 0,025\).
Xác suất sử dụng phác đồ B gây tác dụng phụ nghiêm trọng là \(P\left( N \right) = 0,1\) và xác suất để chọn được phác đồ B là \(P\left( B \right) = 0,5\) nên xác suất chọn được phác đồ B và bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,5 \cdot 0,1 = 0,05\).
Gọi biến C: “Bệnh nhân gặp tác dụng phụ nghiêm trọng” thì \(P\left( C \right) = 0,025 + 0,05 = 0,075\).
Chọn B.
Lời giải
Gọi D là biến cố “bệnh nhân được chữa khỏi bệnh”.
Suy ra \(P\left( D \right) = \frac{1}{2}\left( {P\left( X \right) + P\left( M \right)} \right) = 0,65\).
Gọi \(E\) là biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng”.
Suy ra \(P\left( E \right) = \frac{1}{2}\left( {P\left( {\overline Y } \right) + P\left( {\overline N } \right)} \right)\)\( = \frac{1}{2}\left( {0,95 + 0,9} \right) = 0,925\).
Vậy xác suất để bệnh nhân chữa khỏi bệnh và không bị tác dụng phụ nghiêm trọng là:
\(P\left( {D \cap E} \right) = P\left( D \right) \cdot P\left( E \right) = 0,60125\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 3)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 4)