Câu hỏi:

25/04/2025 50 Lưu

Số nguyên dương \(n\) bé nhất sao cho trong khai triển \({\left( {x + 1} \right)^n}\) có hai hệ số liên tiếp nhau có tỷ số là \(\frac{7}{{15}}\), là:     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \({\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + \ldots + C_n^{n - 1}{x^{n - 1}} + C_n^n{x^n}\).

Hệ số của số hạng thứ \(k\)\(k + 1\) theo khai triển trên là \(C_n^{k - 1},C_n^k\) với \(1 \le k \le n;\,\,k,n \in \mathbb{N}\).

Theo giả thiết ta có:

\(\frac{{C_n^{k - 1}}}{{C_n^k}} = \frac{7}{{15}} \Leftrightarrow \frac{k}{{n - k + 1}} = \frac{7}{{15}} \Leftrightarrow 15k = 7\left( {n - k + 1} \right) \Leftrightarrow 22k = 7\left( {n + 1} \right)\).

Do \(\left( {22;7} \right) = 1\) nên \(n + 1\) chia hết cho 22. Vậy \(n = 22m - 1,m \in \mathbb{N}\).

Vây số nguyên dương \(n\) bé nhất thỏa mãn đề bài là 21. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố X: “Phác đồ A chữa khỏi bệnh” và biến cố Y: “Phác đồ A gây tác dụng phụ nghiêm trọng”. Ta có \(P\left( X \right) = 0,6\)\(P\left( Y \right) = 0,05\).

Gọi biến cố M: “Phác đồ B chữa khỏi bệnh” và biến cố N: “phác đồ B gây tác dụng phụ nghiêm trọng”. Ta có \(P\left( M \right) = 0,7\)\(P\left( N \right) = 0,1\).

Xác suất sử dụng phác đồ A gây tác dụng phụ nghiêm trọng là \(P\left( Y \right) = 0,05\) và xác suất để chọn được phác đồ A là \(P\left( A \right) = 0,5\) nên xác suất chọn được phác đồ A và bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,5 \cdot 0,05 = 0,025\).

Xác suất sử dụng phác đồ B gây tác dụng phụ nghiêm trọng là \(P\left( N \right) = 0,1\) và xác suất để chọn được phác đồ B là \(P\left( B \right) = 0,5\) nên xác suất chọn được phác đồ B và bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,5 \cdot 0,1 = 0,05\).

Gọi biến C: “Bệnh nhân gặp tác dụng phụ nghiêm trọng” thì \(P\left( C \right) = 0,025 + 0,05 = 0,075\).

Chọn B.

Lời giải

Gọi D là biến cố “bệnh nhân được chữa khỏi bệnh”.

Suy ra \(P\left( D \right) = \frac{1}{2}\left( {P\left( X \right) + P\left( M \right)} \right) = 0,65\).

Gọi \(E\) là biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng”.

Suy ra \(P\left( E \right) = \frac{1}{2}\left( {P\left( {\overline Y } \right) + P\left( {\overline N } \right)} \right)\)\( = \frac{1}{2}\left( {0,95 + 0,9} \right) = 0,925\).

Vậy xác suất để bệnh nhân chữa khỏi bệnh và không bị tác dụng phụ nghiêm trọng là:

\(P\left( {D \cap E} \right) = P\left( D \right) \cdot P\left( E \right) = 0,60125\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP