Câu hỏi:
25/04/2025 28Dựa vào thông tin dưới đây để trả lời các câu từ 84 đến 86
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {ABC} = 60^\circ \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(H,\,\,M,\,\,N\) lần lượt là trung điểm \(AB,\,\,SA\) và \(CD\).
Quảng cáo
Trả lời:
Vì tam giác \(SAB\) đều nên \(SH \bot AB\).
Mà \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SH \bot \left( {ABCD} \right)\).
Tam giác \(SAB\) đều cạnh \(a \Rightarrow SH = \frac{{a\sqrt 3 }}{2}\).
Diện tích hình thoi \(ABCD\): \({S_{ABCD}} = 2{S_{\Delta ABC}} = 2 \cdot \frac{1}{2}AB \cdot BC \cdot \sin B = \frac{{{a^2}\sqrt 3 }}{2}\).
Vậy thể tích khối chóp \(S.ABCD\): \({V_{S.ABCD}} = \frac{1}{3}SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\). Chọn A.
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Dễ thấy \(\Delta ABC\) đều, từ đó suy ra các tam giác \(SAC\) và \(SBC\) lần lượt cân tại \(A\) và \(B\).
Gọi \(I\) là trung điểm của \(SC \Rightarrow \left\{ \begin{array}{l}SC \bot AI\\SC \bot BI\end{array} \right. \Rightarrow \widehat {AIB}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SC,B} \right]\).
Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\);
\(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\).
Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).Do đó \(\cos \alpha = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2 \cdot IA \cdot IB}} = \frac{1}{5}\). Chọn C.
Câu 3:
Lời giải của GV VietJack
Ta có \(\Delta ACD\)đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).
\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).
Dựng \(MK \bot SN\) tại \(K \Rightarrow MK\) là đoạn vuông góc chung của \(BM\) và \(SN\).
Suy ra \(MK = d\left( {BM,SN} \right)\).
\(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).
Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\). Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Dựa vào thông tin dưới đây để trả lời các câu từ 81 đến 83
Có hai phác đồ điều trị \(A\) và \(B\) cho một loại bệnh. Phác đồ \(A\) có xác suất chữa khỏi bệnh là \(60\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(5\% \). Phác đồ \(B\) có xác suất chữa khỏi bệnh là \(70\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(10\% \). Một bệnh nhân được điều trị ngẫu nhiên bằng một trong hai phác đồ (xác suất chọn mỗi phác đồ là \(50\% \)).
Xác suất để bệnh nhân bị tác dụng phụ nghiêm trọng là:Câu 2:
Dựa vào thông tin dưới đây để trả lời các câu từ 81 đến 83
Có hai phác đồ điều trị \(A\) và \(B\) cho một loại bệnh. Phác đồ \(A\) có xác suất chữa khỏi bệnh là \(60\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(5\% \). Phác đồ \(B\) có xác suất chữa khỏi bệnh là \(70\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(10\% \). Một bệnh nhân được điều trị ngẫu nhiên bằng một trong hai phác đồ (xác suất chọn mỗi phác đồ là \(50\% \)).
Nếu biết bệnh nhân này gặp tác dụng phụ nghiêm trọng thì xác suất bệnh nhân đã được điều trị bằng phác đồ \(B\) là:Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 3)
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
(2025) Đề minh họa Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án ( Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 4)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận