Câu hỏi:
25/04/2025 38Dựa vào thông tin dưới đây để trả lời các câu từ 87 đến 90
Trong không gian Oxyz, cho ba điểm \(A\left( {4\,;\,0\,;\,0} \right)\), \(B\left( {0\,;\,4\,;\,0\,} \right)\), \(C\left( {0\,;\,0\,;\,4} \right)\).
Quảng cáo
Trả lời:
Phương trình của mặt phẳng \(\left( {ABC} \right)\) có dạng \(\frac{x}{4} + \frac{y}{4} + \frac{z}{4} = 1 \Leftrightarrow x + y + z = 4\). Chọn D.
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)
\( \Leftrightarrow 2ax + 2by + 2cz - d = {x^2} + {y^2} + {z^2}\) \(\left( 1 \right)\).
Thay tọa độ các điểm \(O\,,\,A\,,\,B\,,\,C\) vào \(\left( 1 \right)\), ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - d = 0}\\{8a - d = 16}\\{8b - d = 16}\\{8c - d = 16}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 2}\\{c = 2}\\{d = 0}\end{array}} \right.\).
Khi đó mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\) có tâm \(I\left( {2\,;\,2\,;\,2} \right)\) và bán kính \(R = \sqrt {{2^2} + {2^2} + {2^2} - 0} = 2\sqrt 3 \).
Vậy phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\) là \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 12\). Chọn B.
Câu 3:
Lời giải của GV VietJack
Phương trình mặt phẳng \(\left( {ABC} \right)\) là \(x + y + z - 4 = 0\).
Khi đó \(d\left( {O\,,\,\left( {ABC} \right)} \right) = \frac{{\left| {0 + 0 + 0 - 4} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{4}{{\sqrt 3 }}\). Chọn C.
Câu 4:
Lời giải của GV VietJack
Trong tam giác \(OAC\) hạ \(OH \bot AC\).
Theo bài ra \(\left( {OAC} \right) \bot OB \Rightarrow OH \bot OB\).
Vì \(\left\{ {\begin{array}{*{20}{c}}{OH \bot AC}\\{OH \bot OB}\end{array}} \right.\) nên \(OH\) là đường thẳng vuông góc chung của \(AC\) và \(OB\).
Lại có \(\overrightarrow {AC} = \left( { - 4\,;\,0\,;\,4} \right)\) và \(\overrightarrow {OB} = \left( {0\,;\,4\,;\,0} \right)\).
Khi đó \(\overrightarrow {OH} = \left[ {\overrightarrow {AC} \,,\,\overrightarrow {OB} } \right] = \left( { - 16\,;\,0\,;\, - 16} \right) = - 16\left( {1\,;\,0\,;\,1} \right)\). Suy ra \({\overrightarrow u _{OH}} = \left( {1\,;\,0\,;\,1} \right)\).
Do đó phương trình đường thẳng \(OH\) là \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = t}\end{array}} \right.\).
Nhận thấy đường thẳng \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\) có vectơ chỉ phương \(\overrightarrow u = \left( {2\,;\,0\,;\,2} \right) = 2{\overrightarrow u _{OH}}\) và đi qua điểm \(O\left( {0\,;\,0\,;\,0} \right)\) nên đường thẳng \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\) và \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = t}\end{array}} \right.\) trùng nhau.
Vậy đường thẳng vuông góc chung của \(AC\) và \(OB\) có phương trình là \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\). Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Dựa vào thông tin dưới đây để trả lời các câu từ 81 đến 83
Có hai phác đồ điều trị \(A\) và \(B\) cho một loại bệnh. Phác đồ \(A\) có xác suất chữa khỏi bệnh là \(60\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(5\% \). Phác đồ \(B\) có xác suất chữa khỏi bệnh là \(70\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(10\% \). Một bệnh nhân được điều trị ngẫu nhiên bằng một trong hai phác đồ (xác suất chọn mỗi phác đồ là \(50\% \)).
Xác suất để bệnh nhân bị tác dụng phụ nghiêm trọng là:Câu 2:
Dựa vào thông tin dưới đây để trả lời các câu từ 81 đến 83
Có hai phác đồ điều trị \(A\) và \(B\) cho một loại bệnh. Phác đồ \(A\) có xác suất chữa khỏi bệnh là \(60\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(5\% \). Phác đồ \(B\) có xác suất chữa khỏi bệnh là \(70\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(10\% \). Một bệnh nhân được điều trị ngẫu nhiên bằng một trong hai phác đồ (xác suất chọn mỗi phác đồ là \(50\% \)).
Nếu biết bệnh nhân này gặp tác dụng phụ nghiêm trọng thì xác suất bệnh nhân đã được điều trị bằng phác đồ \(B\) là:Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 3)
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
(2025) Đề minh họa Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án ( Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 4)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận