Câu hỏi:

26/04/2025 68 Lưu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2} + 4x + 5\). Khẳng định nào sau đây đúng?    

A. Hàm số đã cho đồng biến trên \(\mathbb{R}\).              
B. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;10} \right)\).                          
C. Hàm số đã cho nghịch biến trên khoảng \(\left( {0;10} \right)\).                          
D. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 10;0} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({x^2} + 4x + 5 = {x^2} + 4x + 4 + 1 = {\left( {x + 2} \right)^2} + 1 \ge 1 > 0\,\,\forall x\).

Do \(f'\left( x \right) > 0\,\,\forall x \Rightarrow \) Hàm số \(y = f\left( x \right)\) đồng biến trên \(\mathbb{R}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(0\).                    
B. \(1\).                    
C. \(2\).                             
D. \(3\).

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 2x + 2} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} }}{1} = 1\).

\[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x + 2} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 2}}{{\sqrt {{x^2} + 2x + 2} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{2}{x}}}{{\sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} + 1}} = 1\].

Ta có \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2x + 2} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} }}{1} = - 1\).

\[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x + 2} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 2}}{{\sqrt {{x^2} + 2x + 2} - x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{2}{x}}}{{ - \sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} - 1}} = - 1\].

Vậy đồ thị hàm số có hai tiệm cận xiên là: \(y = x + 1\)\(y = - x - 1\). Chọn C.

Câu 2

A. 5,28.105 (Pa).      
B. 4,32.105 (Pa).      
C. 5,76.105 (Pa).               
D. 3,90.105 (Pa).

Lời giải

Chọn A

Trạng thái 1

Trạng thái 2

p1 = 1,013.105 (Pa)

V1

T1 = 300 (K)

p2 = ?

V2 = 0,2V1

T2 = 313 (K)

Có: \(\frac{{{p_1}{V_1}}}{{{T_1}}} = \frac{{{p_2}{V_2}}}{{{T_2}}} \Rightarrow \frac{{1,{{013.10}^5}.{V_1}}}{{300}} = \frac{{{p_2}.0,2{V_1}}}{{313}} \Rightarrow {p_2} \approx 528448\,\,(\;{\rm{Pa}}).\)

Câu 3

A. \(h\left( t \right) = - \frac{1}{{40}}{t^4} + \frac{{11}}{{30}}{t^3} + 20\).                    
B. \(h\left( t \right) = - \frac{1}{{40}}{t^4} + \frac{{11}}{{30}}{t^3}\).                            
C. \(h\left( t \right) = \frac{1}{{40}}{t^4} - \frac{{11}}{{30}}{t^3} + 20\).                    
D. \(h\left( t \right) = \frac{1}{{40}}{t^4} - \frac{{11}}{{30}}{t^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(8,3\).                 
B. \(7,5\).                 
C. \(8,5\).                          
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nitrogenous bases.                                                           
B. Đường ribose.                              
C. Axit photphoric.                                  
D. Đường deoxyribose.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. The dangers of using social media for entertainment.
B. The influence of social media on communication and society.
C. The role of social media in spreading accurate information.
D. Why social media has eliminated face-to-face interaction.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{C_6}{H_5}OH + C{H_3}COCl{\rm{ }} \to C{H_3}COO{C_6}{H_5} + HCl.\]               
B. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}C{H_3}COBr{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}HBr.\]                          
C. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}{\left( {C{H_3}CO} \right)_2}O{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}C{H_3}COOH.\]    
D. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}C{H_3}COOH{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}{H_2}O.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP