Dựa vào thông tin dưới đây để trả lời các câu từ 76 đến 77
Cho phương trình \(\log _3^2x + \sqrt {\log _3^2x + 1} - 2m - 1 = 0\), với m là tham số thực.
Phương trình đã cho có ít nhất một nghiệm thuộc đoạn \(\left[ {1\,;\,{3^{\sqrt 3 }}} \right]\) khi và chỉ khi
Dựa vào thông tin dưới đây để trả lời các câu từ 76 đến 77
Cho phương trình \(\log _3^2x + \sqrt {\log _3^2x + 1} - 2m - 1 = 0\), với m là tham số thực.
Phương trình đã cho có ít nhất một nghiệm thuộc đoạn \(\left[ {1\,;\,{3^{\sqrt 3 }}} \right]\) khi và chỉ khiQuảng cáo
Trả lời:
Từ điều kiện: \(x \in \left[ {1\,;\,{3^{\sqrt 3 }}} \right] \Leftrightarrow 1 \le x \le {3^{\sqrt 3 }} \Leftrightarrow 0 \le {\log _3}x \le \sqrt 3 \)
\( \Leftrightarrow 1 \le \log _3^2x + 1 \le 4\)\( \Leftrightarrow 1 \le \sqrt {\log _3^2x + 1} \le 2 \Leftrightarrow 1 \le t \le 2\).
Cách 1: Phương trình đã cho có ít nhất một nghiệm thuộc đoạn \(\left[ {1\,;\,{3^{\sqrt 3 }}} \right]\)
\( \Leftrightarrow \) phương trình \(f\left( t \right) = {t^2} + t - 2m - 2 = 0\) có ít nhất một nghiệm thuộc đoạn \(\left[ {1\,;\,2} \right]\)
\( \Leftrightarrow \) đường thẳng \(y = 2m + 2\) cắt phần đồ thị hàm số \(y = {t^2} + t\) lấy trên đoạn \(\left[ {1\,;\,2} \right]\) tại ít nhất một điểm.
Ta xét hàm số \(y = {t^2} + t\).
+) Miền xác định \(D = \left[ {1\,;\,2} \right]\).
+) Đạo hàm \(y' = 2t + 1,\,\,y' = 0 \Leftrightarrow 2t + 1 = 0 \Leftrightarrow t = - \frac{1}{2}\).
+) Bảng biến thiên:

Vậy điều kiện là: \(2 \le 2m + 2 \le 6 \Leftrightarrow 0 \le m \le 2\).
Cách 2: Phương trình đã cho có ít nhất một nghiệm thuộc đoạn \(\left[ {1\,;\,{3^{\sqrt 3 }}} \right]\)
\( \Leftrightarrow \) phương trình \(f\left( t \right) = {t^2} + t - 2m - 2 = 0\) có ít nhất một nghiệm thuộc đoạn \(\left[ {1\,;\,2} \right]\)
\( \Leftrightarrow \) đường thẳng \(y = 2m + 2\) cắt phần đồ thị hàm số \(y = {t^2} + t\) lấy trên đoạn \(\left[ {1\,;\,2} \right]\) tại ít nhất một điểm.
Ta xét hàm số \(y = {t^2} + t\).
+) Miền xác định \(D = \left[ {1\,;\,2} \right]\).
+) Đạo hàm \(y' = 2t + 1 > 0,\,\forall t \in D\). Suy ra hàm số đồng biến trên \(D\).
Vậy điều kiện là: \(y\left( 1 \right) \le 2m + 2 \le y\left( 2 \right) \Leftrightarrow 2 \le 2m + 2 \le 6 \Leftrightarrow 0 \le m \le 2\).
Cách 3: Phương trình đã cho có ít nhất một nghiệm thuộc đoạn \(\left[ {1\,;\,{3^{\sqrt 3 }}} \right]\)
\( \Leftrightarrow \) phương trình \(f\left( t \right) = {t^2} + t - 2m - 2 = 0\) có ít nhất một nghiệm thuộc đoạn \(\left[ {1\,;\,2} \right]\)
\( \Leftrightarrow \) phương trình \(f\left( t \right) = {t^2} + t - 2m - 2 = 0\) có nghiệm thỏa mãn:
\(\left[ \begin{array}{l}1 < {t_1} \le {t_2} < 2\\{t_1} \le 1 \le {t_2} \le 2\\1 \le {t_1} \le 2 \le {t_2}\end{array} \right.\) với \({t_1} + {t_2} = - 1\) \( \Leftrightarrow f\left( 1 \right) \cdot f\left( 2 \right) \le 0 \Leftrightarrow - 2m\left( {4 - 2m} \right) \le 0 \Leftrightarrow 0 \le m \le 2\). Chọn D.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Trạng thái 1 |
Trạng thái 2 |
p1 = 1,013.105 (Pa) V1 T1 = 300 (K) |
p2 = ? V2 = 0,2V1 T2 = 313 (K) |
Có: \(\frac{{{p_1}{V_1}}}{{{T_1}}} = \frac{{{p_2}{V_2}}}{{{T_2}}} \Rightarrow \frac{{1,{{013.10}^5}.{V_1}}}{{300}} = \frac{{{p_2}.0,2{V_1}}}{{313}} \Rightarrow {p_2} \approx 528448\,\,(\;{\rm{Pa}}).\)
Lời giải
Ta có bảng sau:
Nhóm |
\[\left[ {5;6} \right)\] |
\[\left[ {6;7} \right)\] |
\[\left[ {7;8} \right)\] |
\[\left[ {8;9} \right)\] |
\[\left[ {9;10} \right)\] |
Giá trị đại diện |
\[5,5\] |
\[6,5\] |
\[7,5\] |
\[8,5\] |
\[9,5\] |
Tần số |
2 |
3 |
8 |
15 |
12 |
Giá trị trung bình của bảng số liệu là: \[\overline x = \frac{{5,5.2 + 6,5.3 + 7,5.8 + 8,5.15 + 9,5.12}}{{40}} = 8,3\]. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.