Câu hỏi:

26/04/2025 105 Lưu

Dựa vào thông tin dưới đây để trả lời các câu từ 81 đến 82

Trong không gian \(Oxyz\), cho tam giác ABC có \(A\left( {2;3;4} \right),B\left( { - 1;1;0} \right),C\left( { - 1;3; - 1} \right)\).

Với điểm \(M\left( {1\,;\,m\,;\,n} \right)\) thỏa mãn ba điểm \(A,B,M\) thẳng hàng thì \(m + 4n\) có giá trị là:

A. \(13\).                  
B. \(20\).                  
C. \( - 21\).                             
D. \( - 14\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow {AM} = \left( { - 1;m - 3;n - 4} \right)\).

\({\rm{A}},{\rm{B}},{\rm{M}}\) thẳng hàng khi 2 vectơ \(\overrightarrow {AM} ,\,\,\overrightarrow {AB} \) cùng phương.

Suy ra \(\frac{{ - 1}}{{ - 3}} = \frac{{m - 3}}{{ - 2}} = \frac{{n - 4}}{{ - 4}} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = \frac{7}{3}}\\{n = \frac{8}{3}}\end{array} \Rightarrow m + 4n = 13} \right.\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(0\).                    
B. \(1\).                    
C. \(2\).                             
D. \(3\).

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 2x + 2} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} }}{1} = 1\).

\[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x + 2} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 2}}{{\sqrt {{x^2} + 2x + 2} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{2}{x}}}{{\sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} + 1}} = 1\].

Ta có \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2x + 2} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} }}{1} = - 1\).

\[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x + 2} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 2}}{{\sqrt {{x^2} + 2x + 2} - x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{2}{x}}}{{ - \sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} - 1}} = - 1\].

Vậy đồ thị hàm số có hai tiệm cận xiên là: \(y = x + 1\)\(y = - x - 1\). Chọn C.

Câu 2

A. 5,28.105 (Pa).      
B. 4,32.105 (Pa).      
C. 5,76.105 (Pa).               
D. 3,90.105 (Pa).

Lời giải

Chọn A

Trạng thái 1

Trạng thái 2

p1 = 1,013.105 (Pa)

V1

T1 = 300 (K)

p2 = ?

V2 = 0,2V1

T2 = 313 (K)

Có: \(\frac{{{p_1}{V_1}}}{{{T_1}}} = \frac{{{p_2}{V_2}}}{{{T_2}}} \Rightarrow \frac{{1,{{013.10}^5}.{V_1}}}{{300}} = \frac{{{p_2}.0,2{V_1}}}{{313}} \Rightarrow {p_2} \approx 528448\,\,(\;{\rm{Pa}}).\)

Câu 3

A. \(h\left( t \right) = - \frac{1}{{40}}{t^4} + \frac{{11}}{{30}}{t^3} + 20\).                    
B. \(h\left( t \right) = - \frac{1}{{40}}{t^4} + \frac{{11}}{{30}}{t^3}\).                            
C. \(h\left( t \right) = \frac{1}{{40}}{t^4} - \frac{{11}}{{30}}{t^3} + 20\).                    
D. \(h\left( t \right) = \frac{1}{{40}}{t^4} - \frac{{11}}{{30}}{t^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(8,3\).                 
B. \(7,5\).                 
C. \(8,5\).                          
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nitrogenous bases.                                                           
B. Đường ribose.                              
C. Axit photphoric.                                  
D. Đường deoxyribose.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. The dangers of using social media for entertainment.
B. The influence of social media on communication and society.
C. The role of social media in spreading accurate information.
D. Why social media has eliminated face-to-face interaction.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{C_6}{H_5}OH + C{H_3}COCl{\rm{ }} \to C{H_3}COO{C_6}{H_5} + HCl.\]               
B. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}C{H_3}COBr{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}HBr.\]                          
C. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}{\left( {C{H_3}CO} \right)_2}O{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}C{H_3}COOH.\]    
D. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}C{H_3}COOH{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}{H_2}O.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP