Câu hỏi:

26/04/2025 76 Lưu

Dựa vào thông tin dưới đây để trả lời các câu từ 88 đến 90

Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right)\)\(\left( Q \right)\) lần lượt có phương trình

\(\left( P \right):2x - y + z + 2 = 0\)\(\left( Q \right):x + y + 2z - 1 = 0\).

Phương trình mặt phẳng \(\left( R \right)\) đi qua \(B\left( { - 1\,;\,3\,;\,4} \right)\), vuông góc với cả \(\left( P \right)\)\(\left( Q \right)\) là:    

A. \(x + y - z + 2 = 0\).                            
B. \(x + y - z - 2 = 0\).                               
C. \(x - 3y - 4z - 2 = 0\).                               
D. \(x + 3y + 4z - 2 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì mặt phẳng \(\left( R \right)\) vuông góc với cả \(\left( P \right)\)\(\left( Q \right)\) nên mặt phẳng \(\left( R \right)\) vuông góc với đường thẳng \(d\) (ở Câu 89), tức là \(\left( R \right)\) có vectơ pháp tuyến \(\vec u = \left( {1\,;\,1\,;\, - 1} \right)\), do đó có phương trình là: \(1\left( {x + 1} \right) + 1\left( {y - 3} \right) - 1\left( {z - 4} \right) = 0\) hay \(x + y - z + 2 = 0\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(0\).                    
B. \(1\).                    
C. \(2\).                             
D. \(3\).

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 2x + 2} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} }}{1} = 1\).

\[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x + 2} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 2}}{{\sqrt {{x^2} + 2x + 2} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{2}{x}}}{{\sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} + 1}} = 1\].

Ta có \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2x + 2} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} }}{1} = - 1\).

\[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x + 2} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 2}}{{\sqrt {{x^2} + 2x + 2} - x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{2}{x}}}{{ - \sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} - 1}} = - 1\].

Vậy đồ thị hàm số có hai tiệm cận xiên là: \(y = x + 1\)\(y = - x - 1\). Chọn C.

Câu 2

A. 5,28.105 (Pa).      
B. 4,32.105 (Pa).      
C. 5,76.105 (Pa).               
D. 3,90.105 (Pa).

Lời giải

Chọn A

Trạng thái 1

Trạng thái 2

p1 = 1,013.105 (Pa)

V1

T1 = 300 (K)

p2 = ?

V2 = 0,2V1

T2 = 313 (K)

Có: \(\frac{{{p_1}{V_1}}}{{{T_1}}} = \frac{{{p_2}{V_2}}}{{{T_2}}} \Rightarrow \frac{{1,{{013.10}^5}.{V_1}}}{{300}} = \frac{{{p_2}.0,2{V_1}}}{{313}} \Rightarrow {p_2} \approx 528448\,\,(\;{\rm{Pa}}).\)

Câu 3

A. \(h\left( t \right) = - \frac{1}{{40}}{t^4} + \frac{{11}}{{30}}{t^3} + 20\).                    
B. \(h\left( t \right) = - \frac{1}{{40}}{t^4} + \frac{{11}}{{30}}{t^3}\).                            
C. \(h\left( t \right) = \frac{1}{{40}}{t^4} - \frac{{11}}{{30}}{t^3} + 20\).                    
D. \(h\left( t \right) = \frac{1}{{40}}{t^4} - \frac{{11}}{{30}}{t^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(8,3\).                 
B. \(7,5\).                 
C. \(8,5\).                          
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nitrogenous bases.                                                           
B. Đường ribose.                              
C. Axit photphoric.                                  
D. Đường deoxyribose.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. The dangers of using social media for entertainment.
B. The influence of social media on communication and society.
C. The role of social media in spreading accurate information.
D. Why social media has eliminated face-to-face interaction.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{C_6}{H_5}OH + C{H_3}COCl{\rm{ }} \to C{H_3}COO{C_6}{H_5} + HCl.\]               
B. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}C{H_3}COBr{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}HBr.\]                          
C. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}{\left( {C{H_3}CO} \right)_2}O{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}C{H_3}COOH.\]    
D. \[{C_6}{H_5}OH{\rm{ }} + {\rm{ }}C{H_3}COOH{\rm{ }} \to {\rm{ }}C{H_3}COO{C_6}{H_5} + {\rm{ }}{H_2}O.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP