Câu hỏi:

26/04/2025 74 Lưu

                                          Một buổi hầu rồi một buổi ngơi,

                                         Đâu còn nhớ chữ “viễn phương lai”.

                                         Mới sang chừng ấy ngơi chừng ấy,

                                         Sang nữa thì ngơi biết mấy đời.

(Cao Bá Quát, Quan ngơi)

Xác định thể thơ của bài thơ?    

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bài thơ được viết theo thể loại: Thất ngôn tứ tuyệt. Thể thơ này có 4 câu, mỗi câu 7 chữ. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Độ dài ngắn nhất của tuyến cáp treo nối với đường bao của khu đô thị chính là khoảng cách từ \(O\) tới điểm cực đại của đồ thị hàm số \(y = \frac{{{x^2} + 1}}{x}\).

Xét hàm số \(y = \frac{{{x^2} + 1}}{x}\) với \(x \ne 0\).

Ta có \(y' = \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow x = - 1\) hoặc \[x = 1\].

Bảng biến thiên:

Độ dài của tuyến cáp treo là bao nhiêu kilômét (làm tròn kết quả đến hàng phần mười)? (ảnh 2)

Dựa vào bảng biến thiên, đồ thị hàm số có điểm cực đại là \(A\left( { - 1; - 2} \right)\).

Khi đó \(OA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt 5 \approx 2,2\).

Vậy độ dài của tuyến cáp treo xấp xỉ \(2,2\)km. Chọn A.

Câu 2

Lời giải

Đặt \(0 < \alpha < \pi \) thỏa \(\cos \alpha = \frac{{2024}}{{2025}}.\) Khi đó,

\(\cos \left( {2018x} \right) = \frac{{2024}}{{2025}} \Leftrightarrow \cos \left( {2018x} \right) = \cos \alpha \)

\( \Leftrightarrow \left[ \begin{array}{l}2018x = \alpha + k2\pi \\2018x = - \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}}\\x = - \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}}\end{array} \right.\left( {k \in \mathbb{Z}} \right).\)

Với \(x \in \left( {0\,;\,2\pi } \right)\), ta có

+ Trường hợp 1: \(0 < \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}} < 2\pi \Leftrightarrow - \frac{\alpha }{{2\pi }} < k < 2018 - \frac{\alpha }{{2\pi }} \Leftrightarrow 0 \le k \le 2017\)

(Vì \(0 < \alpha < \pi \Leftrightarrow \frac{0}{{2\pi }} < \frac{\alpha }{{2\pi }} < \frac{\pi }{{2\pi }} \Leftrightarrow 0 < \frac{\alpha }{{2\pi }} < \frac{1}{2}\)).

Nên có \(2018\) giá trị \(k.\)

+ Trường hợp 2: \(0 < - \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}} < 2\pi \Leftrightarrow \frac{\alpha }{{2\pi }} < k < \frac{\alpha }{{2\pi }} + 2018 \Leftrightarrow 1 \le k \le 2018\).

Nên có \(2018\) giá trị \(k.\)

Dễ dàng thấy các nghiệm ở trường hợp 1 không trùng với nghiệm nào của trường hợp 2.

Vậy phương trình có \(4036\) nghiệm thực thuộc khoảng \(\left( {0\,;\,2\pi } \right)\). Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP