Câu hỏi:

26/04/2025 48

Từ in đậm trong câu sau thuộc từ loại nào: “ …Chao ôi! Đối với những người ở quanh ta, nếu ta không cố tìm mà hiểu họ, thì ta chỉ thấy họ gàn dở, ngu ngốc, bần tiện, xấu xa, bỉ ổi… toàn những cớ để cho ta tàn nhẫn; không bao giờ ta thấy họ là những người đáng thương; không bao giờ ta thương…” (Nam Cao).   

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Căn cứ nội dung bài thán từ.

- Thán từ: từ dùng để bộc lộ tình cảm, cảm xúc (a, ái, ôi, ô hay, than ôi,...) hoặc để gọi đáp (này, ơi, vâng, dạ,…).

- “Chao ôi” là thán từ.

→ Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Xét các biến cố:

A: “Lần thứ nhất lấy được quả bóng bàn loại II”;

B: “Lần thứ hai lấy được quả bóng bàn loại II”.

Xác suất để lần thứ nhất lấy được quả bóng bàn loại II là \(P\left( A \right) = \frac{2}{{20}} = \frac{1}{{10}}\). Chọn D.

Câu 2

Lời giải

Đặt \(0 < \alpha < \pi \) thỏa \(\cos \alpha = \frac{{2024}}{{2025}}.\) Khi đó,

\(\cos \left( {2018x} \right) = \frac{{2024}}{{2025}} \Leftrightarrow \cos \left( {2018x} \right) = \cos \alpha \)

\( \Leftrightarrow \left[ \begin{array}{l}2018x = \alpha + k2\pi \\2018x = - \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}}\\x = - \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}}\end{array} \right.\left( {k \in \mathbb{Z}} \right).\)

Với \(x \in \left( {0\,;\,2\pi } \right)\), ta có

+ Trường hợp 1: \(0 < \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}} < 2\pi \Leftrightarrow - \frac{\alpha }{{2\pi }} < k < 2018 - \frac{\alpha }{{2\pi }} \Leftrightarrow 0 \le k \le 2017\)

(Vì \(0 < \alpha < \pi \Leftrightarrow \frac{0}{{2\pi }} < \frac{\alpha }{{2\pi }} < \frac{\pi }{{2\pi }} \Leftrightarrow 0 < \frac{\alpha }{{2\pi }} < \frac{1}{2}\)).

Nên có \(2018\) giá trị \(k.\)

+ Trường hợp 2: \(0 < - \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}} < 2\pi \Leftrightarrow \frac{\alpha }{{2\pi }} < k < \frac{\alpha }{{2\pi }} + 2018 \Leftrightarrow 1 \le k \le 2018\).

Nên có \(2018\) giá trị \(k.\)

Dễ dàng thấy các nghiệm ở trường hợp 1 không trùng với nghiệm nào của trường hợp 2.

Vậy phương trình có \(4036\) nghiệm thực thuộc khoảng \(\left( {0\,;\,2\pi } \right)\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP