Dựa vào thông tin dưới đây để trả lời các câu từ 78 đến 80
Trong một hộp có 18 quả bóng bàn loại I và 2 quả bóng bàn loại II, các quả bóng bàn có hình dạng và kích thước như nhau. Một học sinh lấy ngẫu nhiên lần lượt 2 quả bóng bàn (lấy không hoàn lại) trong hộp.
Xác suất để lần thứ nhất lấy được quả bóng bàn loại II là:
Dựa vào thông tin dưới đây để trả lời các câu từ 78 đến 80
Trong một hộp có 18 quả bóng bàn loại I và 2 quả bóng bàn loại II, các quả bóng bàn có hình dạng và kích thước như nhau. Một học sinh lấy ngẫu nhiên lần lượt 2 quả bóng bàn (lấy không hoàn lại) trong hộp.
Quảng cáo
Trả lời:
Xét các biến cố:
A: “Lần thứ nhất lấy được quả bóng bàn loại II”;
B: “Lần thứ hai lấy được quả bóng bàn loại II”.
Xác suất để lần thứ nhất lấy được quả bóng bàn loại II là \(P\left( A \right) = \frac{2}{{20}} = \frac{1}{{10}}\). Chọn D.
Câu hỏi cùng đoạn
Câu 2:
Xác suất để cả hai lần đều lấy được quả bóng bàn loại II là:
Lời giải của GV VietJack
Sau khi lấy quả bóng bàn loại II thì chỉ còn 1 quả bóng bàn loại II trong hộp. Suy ra xác suất để lần thứ hai lấy được quả bóng bàn loại II, biết lần thứ nhất lấy được quả bóng bàn loại II, là \(P\left( {B|A} \right) = \frac{1}{{19}}\).
Khi đó xác suất để cả hai lần đều lấy được quả bóng bàn loại II là:
\(P\left( C \right) = P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{1}{{10}} \cdot \frac{1}{{19}} = \frac{1}{{190}}.\) Chọn A.
Câu 3:
Xác suất để ít nhất 1 lần lấy được quả bóng bàn loại I là
Lời giải của GV VietJack
Xác suất để ít nhất 1 lần lấy được quả bóng bàn loại \(I\) là:
\(P\left( {\overline C } \right) = 1 - P\left( C \right) = 1 - \frac{1}{{190}} = \frac{{189}}{{190}}\). Chọn B.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(0 < \alpha < \pi \) thỏa \(\cos \alpha = \frac{{2024}}{{2025}}.\) Khi đó,
\(\cos \left( {2018x} \right) = \frac{{2024}}{{2025}} \Leftrightarrow \cos \left( {2018x} \right) = \cos \alpha \)
\( \Leftrightarrow \left[ \begin{array}{l}2018x = \alpha + k2\pi \\2018x = - \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}}\\x = - \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}}\end{array} \right.\left( {k \in \mathbb{Z}} \right).\)
Với \(x \in \left( {0\,;\,2\pi } \right)\), ta có
+ Trường hợp 1: \(0 < \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}} < 2\pi \Leftrightarrow - \frac{\alpha }{{2\pi }} < k < 2018 - \frac{\alpha }{{2\pi }} \Leftrightarrow 0 \le k \le 2017\)
(Vì \(0 < \alpha < \pi \Leftrightarrow \frac{0}{{2\pi }} < \frac{\alpha }{{2\pi }} < \frac{\pi }{{2\pi }} \Leftrightarrow 0 < \frac{\alpha }{{2\pi }} < \frac{1}{2}\)).
Nên có \(2018\) giá trị \(k.\)
+ Trường hợp 2: \(0 < - \frac{\alpha }{{2018}} + k\frac{\pi }{{1009}} < 2\pi \Leftrightarrow \frac{\alpha }{{2\pi }} < k < \frac{\alpha }{{2\pi }} + 2018 \Leftrightarrow 1 \le k \le 2018\).
Nên có \(2018\) giá trị \(k.\)
Dễ dàng thấy các nghiệm ở trường hợp 1 không trùng với nghiệm nào của trường hợp 2.
Vậy phương trình có \(4036\) nghiệm thực thuộc khoảng \(\left( {0\,;\,2\pi } \right)\). Chọn D.
Lời giải
Độ dài ngắn nhất của tuyến cáp treo nối với đường bao của khu đô thị chính là khoảng cách từ \(O\) tới điểm cực đại của đồ thị hàm số \(y = \frac{{{x^2} + 1}}{x}\).
Xét hàm số \(y = \frac{{{x^2} + 1}}{x}\) với \(x \ne 0\).
Ta có \(y' = \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow x = - 1\) hoặc \[x = 1\].
Bảng biến thiên:

Dựa vào bảng biến thiên, đồ thị hàm số có điểm cực đại là \(A\left( { - 1; - 2} \right)\).
Khi đó \(OA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt 5 \approx 2,2\).
Vậy độ dài của tuyến cáp treo xấp xỉ \(2,2\)km. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.