Câu hỏi:

27/04/2025 445 Lưu

Dựa vào thông tin dưới đây để trả lời các câu từ 87 đến 90

Trong không gian tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 12}}{4} = \frac{{y - 9}}{3} = \frac{{z - 1}}{1}\) và mặt phẳng \(\left( P \right)\) có phương trình \(3x + 5y - z - 2 = 0\).

Tọa độ giao điểm \(A\) của của đường thẳng d với mặt phẳng \(\left( P \right)\) là:     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường thẳng d đi qua điểm \(\left( {12\,;\,9;\,1} \right)\) và có vectơ chỉ phương \({\vec u_d} = \left( {4\,;\,3 & ;\,1} \right)\).

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \({\vec n_P} = \left( {3\,;\,5\,;\, - 1} \right)\).

\({\vec u_d} \cdot {\vec n_P} = 4 \cdot 3 + 3 \cdot 5 + 1 \cdot \left( { - 1} \right) = 26 \ne 0\) nên d cắt \(\left( P \right)\).

Với \(A\left( {x\,;y\,;\,z} \right)\) là giao điểm của đường thẳng d với mặt phẳng \(\left( P \right)\), tọa độ điểm A thỏa mãn hệ

\(\left\{ \begin{array}{l}x = 12 + 4t\\y = 9 + 3t\\z = 1 + t\\3x + 5y - z - 2 = 0\end{array} \right. \Rightarrow t = - 3 \Rightarrow A\left( {0\,;\,0\,;\, - 2} \right)\). Chọn B.

Câu hỏi cùng đoạn

Câu 2:

Phương trình hình chiếu vuông góc \(d'\) của d trên mặt phẳng \(\left( P \right)\) là:     

Xem lời giải

verified Lời giải của GV VietJack

Hình chiếu \(d'\) của d trên mặt phẳng \(\left( P \right)\) là giao tuyến của mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\), với \(\left( Q \right)\) đi qua d và vuông góc với \(\left( P \right)\). Như vậy, \(\left( Q \right)\) có vectơ pháp tuyến là:

\({\vec n_Q} = \left[ {{{\vec u}_d}\,,\,{{\vec n}_P}} \right] = \left( { - 8\,;\,7;\,11} \right)\).

Phương trình tổng quát của mặt phẳng \(\left( Q \right)\) là:

\( - 8\left( {x - 12} \right) + 7\left( {y - 9} \right) + 11\left( {z - 1} \right) = 0\) hay \(8x - 7y - 11z - 22 = 0\).

Vậy hình chiếu \(d'\) của d trên mặt phẳng \(\left( P \right)\) là giao tuyến của mặt phẳng:

\(3x + 5y - z - 2 = 0\)\(8x - 7y - 11z - 22 = 0\).

Đường thẳng \(d'\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 62t\\y = - 25t\\z = - 2 + 61t\end{array} \right.\left( {t \in \mathbb{R}} \right)\). Chọn D.

Câu 3:

Cho điểm \(B\left( {1\,;\,0\,;\, - 1} \right)\), tọa độ của điểm \(B'\) sao cho \(\left( P \right)\) là mặt phẳng trung trực của đoạn thẳng \(BB'\) là:     

Xem lời giải

verified Lời giải của GV VietJack

\(\left( P \right)\) là mặt phẳng trung trực của \(BB'\) khi và chỉ khi \(BB' \bot \left( P \right)\) và giao điểm của \(BB'\) với \(\left( P \right)\) là trung điểm của đoạn thẳng \(BB'\).

Ta có phương trình đường thẳng \(BB'\)\(\left\{ \begin{array}{l}x = 1 + 3t\\y = 5t\\z = - 1 - t\end{array} \right.\,\left( {t \in \mathbb{R}} \right)\).

Gọi H là giao điểm của \(BB'\) với \(\left( P \right)\) thì tọa độ \(\left( {x\,;\,y\,;z} \right)\) của H thỏa mãn hệ

\(\left\{ \begin{array}{l}x = 1 + 3t\\y = 5t\\z = - 1 - t\\3x + 5y - z - 2 = 0\end{array} \right. \Rightarrow t = - \frac{2}{{35}} \Rightarrow H\left( {\frac{{29}}{{35}}\,;\, - \frac{2}{7};\, - \frac{{33}}{{35}}} \right)\).

H là trung điểm của \(BB'\) nên \(\left\{ \begin{array}{l}{x_{B'}} = 2{x_H} - {x_B} = \frac{{23}}{{35}}\\{y_{B'}} = 2{y_H} - {y_B} = - \frac{4}{7}\\{z_{B'}} = 2{z_H} - {z_B} = - \frac{{31}}{{35}}\end{array} \right. \Rightarrow B'\left( {\frac{{23}}{{35}};\, - \frac{4}{7};\, - \frac{{31}}{{35}}} \right)\). Chọn A.

Câu 4:

Phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng \(\left( P \right)\), vuông góc và cắt đường thẳng d là:     

Xem lời giải

verified Lời giải của GV VietJack

Đường thẳng \(\Delta \) phải tìm nằm trong mặt phẳng \(\left( P \right)\), đồng thời nằm trong mặt phẳng \(\left( R \right)\) đi qua \(A\left( {0\,;\,0\,;\, - 2} \right)\) và vuông góc với d.

Mặt phẳng \(\left( R \right)\) có vectơ pháp tuyến \({\vec n_R} = \left( {4\,;\,3\,;\,1} \right)\) nên có phương trình \(4x + 3y + z + 2 = 0\).

Vậy \(\Delta \) là giao tuyến của hai mặt phẳng \(3x + 5y - z - 2 = 0\)\(4x + 3y + z + 2 = 0\), suy ra \(\Delta \) có phương trình tham số là \(\left\{ \begin{array}{l}x = 8t\\y = - 7t\\z = - 2 - 11t\end{array} \right.\,\left( {t \in \mathbb{R}} \right)\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Gọi A, B, C lần lượt là biến cố thí sinh được chọn lọt vào vòng sơ khảo, vòng bán kết và vòng chung kết.

Vì có 50% thí sinh lọt vào vòng sơ khảo nên \(P\left( A \right) = 0,5\).

Vì có 30% thí sinh của vòng sơ khảo được chọn để vào vòng bán kết nên \(P\left( {B|A} \right) = 0,3\).

Khi đó, xác suất để thí sinh lọt vào vòng bán kết là:

\(P\left( B \right) = P\left( {AB} \right) = P\left( {B|A} \right) \cdot P\left( A \right) = 0,3 \cdot 0,5 = 0,15\). Chọn B.

Câu 2

Lời giải

Nhìn đồ thị ta thấy đồ thị hàm số có đường tiệm cận xiên đi qua hai điểm \(M\left( { - 1\,;0} \right),N\left( {0\,;1} \right)\) nên có phương trình: \(y = x + 1\). Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tốc độ tăng trưởng diện tích cây công nghiệp lâu năm năm 2021 của vùng Tây Nguyên hơn vùng Trung du miền núi Bắc Bộ bao nhiêu %?    

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP