Câu hỏi:

06/05/2025 7

Cho tứ diện đều ABCD có cạnh bằng a. Tính góc \(\left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)\).

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Tính góc   ( −−→ A B , −−→ C D )  . (ảnh 1)

Gọi M là trung điểm CD.

Ta có \(\overrightarrow {AB} .\overrightarrow {CD} = \left( {\overrightarrow {AM} + \overrightarrow {MB} } \right).\overrightarrow {CD} = \overrightarrow {AM} .\overrightarrow {CD} + \overrightarrow {MB} .\overrightarrow {CD} \).

Do tam giác ACD đều nên \(AM \bot CD \Rightarrow \overrightarrow {AM} .\overrightarrow {CD} = 0\).

Và tam giác BCD đều nên BM CD \( \Rightarrow \overrightarrow {BM} .\overrightarrow {CD} = 0\).

Vậy \(\overrightarrow {AB} .\overrightarrow {CD} = \left( {\overrightarrow {AM} + \overrightarrow {MB} } \right).\overrightarrow {CD} = \overrightarrow {AM} .\overrightarrow {CD} + \overrightarrow {MB} .\overrightarrow {CD} = 0 \Rightarrow \overrightarrow {AB} \bot \overrightarrow {CD} \).

Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = 90^\circ \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây là sai?

Xem đáp án » 06/05/2025 18

Câu 2:

Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Khi đó \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {DM} } \right)\)bằng

Xem đáp án » 06/05/2025 13

Câu 3:

Cho tứ diện S.ABC có đáy là tam giác đều cạnh a, SB vuông góc với đáy và \(SB = a\sqrt 3 \). Góc giữa hai vectơ \(\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\) là

Xem đáp án » 06/05/2025 11

Câu 4:

Cho hình lập phương ABCD.EFGH có cạnh bằng a. Ta có \(\overrightarrow {AB} .\overrightarrow {EG} \) bằng

Xem đáp án » 06/05/2025 11

Câu 5:

Cho hai vectơ \(\overrightarrow u ,\overrightarrow v \) có \(\left| {\overrightarrow u } \right| = 3,\left| {\overrightarrow v } \right| = 4\) và góc giữa hai vectơ \(\overrightarrow u ,\overrightarrow v \) bằng 60°. Tích vô hướng \(\overrightarrow u .\overrightarrow v \) bằng

Xem đáp án » 06/05/2025 9

Câu 6:

Cho hình chóp S.ABC có AB = 4; \(\widehat {BAC} = 60^\circ ;\overrightarrow {AB} .\overrightarrow {AC} = 6\). Khi đó độ dài \(\overrightarrow {AC} \) là

Xem đáp án » 06/05/2025 9

Câu 7:

Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 3,\left| {\overrightarrow b } \right| = 2\) và \(\overrightarrow a .\overrightarrow b = - 3\). Xác định góc α giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).

Xem đáp án » 06/05/2025 9
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua