Phần II. Trắc nghiệm đúng, sai
Cho tập hợp \(X = \left\{ { - 3; - 1;0;1;3} \right\}\).
a) \( - 1\) là một phần tử của tập hợp \(X\).
b) Số tập hợp con của \(X\) có \(2\) phần tử là \(10\).
c) Tính chất đặc trưng của tập hợp \(X\) là \(X = \left\{ {x \in \mathbb{N}|2x + 1 \le 5} \right\}\).
d) Số tập con của tập hợp \(X\) là \(32\) tập hợp.
Phần II. Trắc nghiệm đúng, sai
a) \( - 1\) là một phần tử của tập hợp \(X\).
b) Số tập hợp con của \(X\) có \(2\) phần tử là \(10\).
c) Tính chất đặc trưng của tập hợp \(X\) là \(X = \left\{ {x \in \mathbb{N}|2x + 1 \le 5} \right\}\).
d) Số tập con của tập hợp \(X\) là \(32\) tập hợp.
Quảng cáo
Trả lời:
a) Đúng. \( - 1\) là một phần tử của tập hợp \(X\) nên \( - 1 \in X\).
b) Đúng. Tập hợp con của \(X\) có 2 phần tử là:
\(\left\{ { - 3; - 1} \right\},\left\{ { - 3;0} \right\},\left\{ { - 3;1} \right\},\left\{ { - 3;3} \right\},\left\{ { - 1;0} \right\},\left\{ { - 1;1} \right\},\left\{ { - 1;3} \right\},\left\{ {0;1} \right\},\left\{ {0;3} \right\},\left\{ {1;3} \right\}\).
Vậy số tập hợp con của \(X\) có \(2\) phần tử là \(10\).
c) Sai. Ta có \(X = \left\{ {x \in \mathbb{N}|2x + 1 \le 5} \right\}\).
Liệt kê các phần tử của tập \(X = \left\{ {1;3;5} \right\}\).
d) Đúng.
Tập con của \(X\) có 0 phần tử có 1 tập hợp là tập \(\emptyset \)
Tập con của \(X\) có 1 phần tử có 5 tập hợp
Tập con của \(X\) có 2 phần tử có 10 tập hợp
Tập con của \(X\) có 3 phần tử có 10 tập hợp
Tập con của \(X\) có 4 phần tử có 5 tập hợp
Tập con của \(X\) có 5 phần tử có 1 tập hợp là tập \(X\).
Khi đó, số tập con của tập hợp \(X\) là \(1 + 5 + 10 + 10 + 5 + 1 = 32\) tập hợp.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
\[A = \left\{ {x \in \mathbb{R}\left| {{x^2} + x + 1 = 0} \right.} \right\}\]. Ta có \[{x^2} + x + 1 = 0\,\left( {vn} \right)\]\[ \Rightarrow A = \emptyset \].
\[B = \left\{ {x \in \mathbb{N}\left| {{x^2} - 2 = 0} \right.} \right\}\]. Ta có \[{x^2} - 2 = 0\]\[ \Leftrightarrow x = \pm \sqrt 2 \notin \mathbb{N}\]\[ \Rightarrow B = \emptyset \].
\[C = \left\{ {x \in \mathbb{Z}\left| {\left( {{x^3}--3} \right)\left( {{x^2} + 1} \right) = 0} \right.} \right\}\]. Ta có \[\left( {{x^3}--3} \right)\left( {{x^2} + 1} \right) = 0\]\[ \Leftrightarrow x = \sqrt[3]{3} \notin \mathbb{Z}\]\[ \Rightarrow C = \emptyset \].
\[D = \left\{ {x \in \mathbb{Q}\left| {x\left( {{x^2} + 3} \right) = 0} \right.} \right\}\]. Ta có \[x\left( {{x^2} + 3} \right) = 0\]\[ \Leftrightarrow x = 0\]\[ \Rightarrow D = \left\{ 0 \right\}.\]
Lời giải
a) Đúng. Ta có phương trình \(\left( {{x^2} - 6x + 5} \right)\left( {x - m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} - 6x + 5 = 0\\x - m = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 5\\x = m\end{array} \right.\).
Do đó \(1 \in A\).
b) Sai. Phương trình đã cho có ba nghiệm phân biệt khi \(\left\{ \begin{array}{l}m \ne 1\\m \ne 5\end{array} \right.\) \( \Rightarrow \) tập hợp \(A\) có ba phần tử khi \(\left\{ \begin{array}{l}m \ne 1\\m \ne 5\end{array} \right.\).
c) Đúng. Tập hợp \(A\) có đúng hai phần tử khi phương trình có đúng 2 nghiệm phân biệt \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\).
d) Sai. Nếu \[\left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\] thì \(A = \left\{ {1\,;5} \right\}\). Khi đó tổng các phần tử của tập \(A\) bằng 6.
Nếu \(\left\{ \begin{array}{l}m \ne 1\\m \ne 5\end{array} \right.\) thì \(A = \left\{ {1\,;5\,;m} \right\}\). Khi đó \(1 + 5 + m = 6 \Leftrightarrow m = 0\).
Vậy có 3 giá trị của tham số \(m\) để tổng tất cả các phần tử của tập \(A\) bằng 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.