Cho hai tập \(A = \left\{ {x \in \mathbb{R}|x + 2 \ge 0} \right\}\) và \(B = \left\{ {x \in \mathbb{R}|2x - 1 < 0} \right\}\).
a) \(A = \left[ { - 2; + \infty } \right)\), \(B = \left( { - \infty ;\frac{1}{2}} \right)\).
b) Biểu diễn trên trục số tập hợp \(A\) là
c) \(A \cap B = \left( { - \infty ; + \infty } \right)\).
d) Số phần tử nguyên của tập hợp \(A \cap B\) là 5.
Cho hai tập \(A = \left\{ {x \in \mathbb{R}|x + 2 \ge 0} \right\}\) và \(B = \left\{ {x \in \mathbb{R}|2x - 1 < 0} \right\}\).
a) \(A = \left[ { - 2; + \infty } \right)\), \(B = \left( { - \infty ;\frac{1}{2}} \right)\).
b) Biểu diễn trên trục số tập hợp \(A\) là
c) \(A \cap B = \left( { - \infty ; + \infty } \right)\).
d) Số phần tử nguyên của tập hợp \(A \cap B\) là 5.
Quảng cáo
Trả lời:
a) Đúng. Ta có \[x + 2 \ge 0 \Leftrightarrow x \ge - 2\]. Do đó \(A = \left[ { - 2; + \infty } \right)\).
Ta có \(2x - 1 < 0 \Leftrightarrow x < \frac{1}{2}\). Do đó \(B = \left( { - \infty ;\frac{1}{2}} \right)\).
b) Đúng.
c) Sai. Vì \(A \cap B = \left[ { - 2;\frac{1}{2}} \right)\).
d) Sai. Ta có \(A \cap B = \left[ { - 2;\frac{1}{2}} \right)\) nên \(A \cap B\) có các phần tử nguyên là \( - 2; - 1;0\). Do đó số phần tử nguyên của tập hợp\(A \cap B\) là 3.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Vì \(A\backslash X = \left\{ {1;3;5} \right\}\) nên X phải chứa hai phần tử 2; 4 và X không chứa các phần tử 1; 3; 5. Mặt khác \(X\backslash A = \left\{ {6;7} \right\}\) vậy X phải chứa 6; 7 và các phần tử khác nếu có phải thuộc \(A\).
Vậy \(X = \left\{ {2;4;6;7} \right\}\).
Lời giải
Gọi \[x\] là số học sinh chỉ đăng kí môn cờ vua.
\[y\] là số học sinh chỉ đăng kí môn cờ tướng.
\[z\] là số học sinh tham gia cả hai môn này.
Số học sinh đăng kí môn cờ vua là \[17\] học sinh \[ \Rightarrow x + z = 17\]\[ \Leftrightarrow x = 17 - z\].
Số học sinh đăng kí môn cờ tướng là \[28\]học sinh \[ \Rightarrow y + z = 28\]\[ \Leftrightarrow y = 28 - z\].
Vì tổng số học sinh lớp đó là \[40\] học sinh nên ta có:
\[x + y + z = 40\]\[ \Leftrightarrow 17 - z + 28 - z + z = 40\]\[ \Leftrightarrow z = 5\].
Vậy số học sinh đăng kí cả hai môn cờ là \[5\] học sinh.
a) Sai. Có \(23\) học sinh chỉ đăng kí môn cờ tướng.
b) Sai. Số học sinh chỉ đăng kí môn cờ vua là \[12\] học sinh.
c) Đúng. Số học sinh đăng kí môn cờ tướng là \[28\] học sinh.
d) Đúng. Có tất cả \(5\) học sinh đăng kí cả hai môn cờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.