Câu hỏi:

06/06/2025 35

Chọn phát biểu đúng. Với \(a,b,c \ne 0\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Với \(a,b,c \ne 0\), nếu \(a + b = c\) thì \(a = c - b.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

c (ảnh 1)

a) Ta có \(\widehat {xOz}\)\(\widehat {zOy}\) là hai góc kề nhau nên \(\widehat {xOz} + \widehat {zOy} = \widehat {xOy}\), mà \(\widehat {xOy}\) là góc bẹt nên \(\widehat {xOy} = 180^\circ \)

Do đó, \(\widehat {xOz} + \widehat {zOy} = 180^\circ \), suy ra \(\widehat {zOy} = 180^\circ - \widehat {xOz} = 180^\circ - 70^\circ = 110^\circ \).

Vậy \(\widehat {zOy} = 110^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) S             b) Đ            c) S             d) Đ

a) Nhận thấy \(\widehat {xAB}\)\(\widehat {CAB}\) là hai góc kề nhau do \(\widehat {xAB} + \widehat {CAB} \ne 180^\circ \). Do đó, ý a) sai.

b) Vì tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên ta có \(\widehat {yAB} = 2\widehat {BAC}\). Do đó, ý b) là đúng.

c) Có \(\widehat {xAB}\)\(\widehat {yAB}\) là hai góc kề là hai góc kề bù nên ta có \(\widehat {xAB} + \widehat {yAB} = 180^\circ \).

Do đó, \(\widehat {yAB} = 180^\circ - \widehat {xAB} = 180^\circ - 70^\circ = 110^\circ \).

Mà tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên \(\widehat {yAC} = CAB = \frac{{\widehat {yAB}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

Vậy ý c) sai.

d) Ta có: \(\widehat {yAC} = 55^\circ \); \(\widehat {ACB} = 55^\circ \) nên \(\widehat {ACB} = \widehat {yAC}\).

Mà hai góc ở vị trí so le trong nên \(xy\parallel BC\).

Do đó, ý d) đúng.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP