Câu hỏi:

06/06/2025 6

Cho các phân số \(\frac{5}{8};{\rm{ }} - \frac{3}{{20}};{\rm{ }}\frac{4}{{11}};{\rm{ }}\frac{{15}}{{22}};{\rm{ }} - \frac{7}{{12}};{\rm{ }}\frac{{14}}{{35}}\). Hỏi có bao nhiêu phân số viết được dưới dạng số thập phân vô hạn tuần hoàn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(3\)

Xét các phân số, ta có:

\(\frac{5}{8} = \frac{5}{{{2^3}}}\) nên \(\frac{5}{8}\) viết được dưới dạng số thập phân hữu hạn.

\( - \frac{3}{{20}} = \frac{{ - 3}}{{{2^2}.5}}\) nên \( - \frac{3}{{20}}\) viết được dưới dạng số thập phân hữu hạn.

\(\frac{4}{{11}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số là 11.

\(\frac{{15}}{{22}} = \frac{{15}}{{2.11}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số có ước là 11 (khác 2 và 5).

\(\frac{{ - 7}}{{12}} = \frac{{ - 7}}{{{{3.2}^2}}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số có ước khác 2 và 5.

\(\frac{{14}}{{35}} = \frac{2}{5}\) viết được dưới dạng số thập phân hữu hạn.

Do đó, có 3 phân số viết được dưới dạng số thập phân vô hạn tuần hoàn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tính \(\widehat {zOy}\).

Lời giải

c (ảnh 1)

a) Ta có \(\widehat {xOz}\)\(\widehat {zOy}\) là hai góc kề nhau nên \(\widehat {xOz} + \widehat {zOy} = \widehat {xOy}\), mà \(\widehat {xOy}\) là góc bẹt nên \(\widehat {xOy} = 180^\circ \)

Do đó, \(\widehat {xOz} + \widehat {zOy} = 180^\circ \), suy ra \(\widehat {zOy} = 180^\circ - \widehat {xOz} = 180^\circ - 70^\circ = 110^\circ \).

Vậy \(\widehat {zOy} = 110^\circ \).

Lời giải

Hướng dẫn giải

Đáp án: \(45\)

Ta có: \(\widehat {aBE} = \widehat {BED} = 60^\circ \) (giả thiết)

Mà hai góc ở vị trí so le trong.

Suy ra \(a\parallel b\).

Do đó, \(\widehat {BCD} + \widehat {BCA} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BCA} = 180^\circ - \widehat {BCD} = 180^\circ - 135^\circ = 45^\circ \).

Ta có \(\widehat {BCA} = \widehat {EDC}\) (hai góc đồng vị) nên \(\widehat {CED} = 45^\circ \).

Câu 3

Số thập phân \(0,36363636.....\) được viết dưới dạng thu gọn (có chu kì trong dấu ngoặc) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Căn bậc hai số học của \(81\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay