Câu hỏi:

06/06/2025 53 Lưu

Phát biểu nào sau đây là sai?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có, số hữu tỉ và số vô tỉ được gọi chung là số thực.

Do đó, phát biểu B là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có: \(\frac{7}{5} + \frac{5}{7}.\left( { - \frac{7}{{25}}} \right) = \frac{7}{5} + \left( { - \frac{1}{5}} \right) = \frac{6}{5}.\)

b) Ta có: \(\left( { - \frac{3}{4} + \frac{2}{7}} \right):\frac{2}{3} + \left( { - \frac{1}{4} + \frac{5}{7}} \right):\frac{2}{3} = \left( { - \frac{3}{4} + \frac{2}{7}} \right).\frac{3}{2} + \left( { - \frac{1}{4} + \frac{5}{7}} \right).\frac{3}{2}\)

                                                              \( = \left( { - \frac{3}{4} + \frac{2}{7} + \frac{5}{7} - \frac{1}{4}} \right).\frac{3}{2}\)

                                                              \( = \left[ {\left( { - \frac{3}{4} - \frac{1}{4}} \right) + \left( {\frac{2}{7} + \frac{5}{7}} \right)} \right].\frac{3}{2}\)

                                                              \( = \left[ { - 1 + 1} \right].\frac{3}{2} = 0.\frac{3}{2} = 0\).

c) \(4.{\left( { - \frac{1}{2}} \right)^3} + \left| { - \frac{3}{2} + \sqrt {\frac{9}{4}} } \right|:\sqrt {0,25} = 4.\frac{{\left( { - 1} \right)}}{8} + \left| { - \frac{3}{2} + \frac{3}{2}} \right|:0,5 = \frac{{ - 1}}{2} + 0:0,5 = \frac{{ - 1}}{2} + 0 = \frac{{ - 1}}{2}.\)

Lời giải

Hướng dẫn giải

Đáp án: \( - 4\)

Ta có: \(\frac{1}{2}x + \frac{1}{3} = - \frac{5}{3}\)

          \(\frac{1}{2}x = - \frac{5}{3} - \frac{1}{3}\)

          \(\frac{1}{2}x = - 2\)

          \(x = - 2.2\)

          \(x = - 4\).

Vậy \(x = - 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP