Câu hỏi:

06/06/2025 38

Công thức tính diện tích xung quanh của hình hộp chữ nhật có chiều dài là \(a,\) chiều rộng là \(b,\) chiều cao là \(h\) (\(a,b,h\) cùng đơn vị đo) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Công thức tính diện tích xung quanh của hình hộp chữ nhật có chiều dài là \(a,\) chiều rộng là \(b,\) chiều cao là \(h\) (\(a,b,h\) cùng đơn vị đo) là \({S_{xq}} = 2\left( {a + b} \right).h.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có: \(\frac{7}{5} + \frac{5}{7}.\left( { - \frac{7}{{25}}} \right) = \frac{7}{5} + \left( { - \frac{1}{5}} \right) = \frac{6}{5}.\)

b) Ta có: \(\left( { - \frac{3}{4} + \frac{2}{7}} \right):\frac{2}{3} + \left( { - \frac{1}{4} + \frac{5}{7}} \right):\frac{2}{3} = \left( { - \frac{3}{4} + \frac{2}{7}} \right).\frac{3}{2} + \left( { - \frac{1}{4} + \frac{5}{7}} \right).\frac{3}{2}\)

                                                              \( = \left( { - \frac{3}{4} + \frac{2}{7} + \frac{5}{7} - \frac{1}{4}} \right).\frac{3}{2}\)

                                                              \( = \left[ {\left( { - \frac{3}{4} - \frac{1}{4}} \right) + \left( {\frac{2}{7} + \frac{5}{7}} \right)} \right].\frac{3}{2}\)

                                                              \( = \left[ { - 1 + 1} \right].\frac{3}{2} = 0.\frac{3}{2} = 0\).

c) \(4.{\left( { - \frac{1}{2}} \right)^3} + \left| { - \frac{3}{2} + \sqrt {\frac{9}{4}} } \right|:\sqrt {0,25} = 4.\frac{{\left( { - 1} \right)}}{8} + \left| { - \frac{3}{2} + \frac{3}{2}} \right|:0,5 = \frac{{ - 1}}{2} + 0:0,5 = \frac{{ - 1}}{2} + 0 = \frac{{ - 1}}{2}.\)

Lời giải

Hướng dẫn giải

Ta có: \(\frac{1}{{{2^2}}} = \frac{1}{{2.2}} < \frac{1}{{1.2}}\)

           \(\frac{1}{{{3^2}}} = \frac{1}{{3.3}} < \frac{1}{{2.3}}\)

          \(\frac{1}{{{4^2}}} = \frac{1}{{4.4}} < \frac{1}{{3.4}}\)

           ….

         \(\frac{1}{{{{50}^2}}} = \frac{1}{{50.50}} < \frac{1}{{49.50}}\)

Do đó, \(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + .... + \frac{1}{{{{50}^2}}} < \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + .... + \frac{1}{{49.50}}\)

Suy ra \(M < 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + .... + \frac{1}{{49}} - \frac{1}{{50}}\) hay \(M < 1 - \frac{1}{{50}}\).

Suy ra \(M < \frac{{49}}{{50}}\) hay \(M < 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP