Câu hỏi:

18/06/2025 65 Lưu

Chọn kết quả đúng của \(\mathop {\lim }\limits_{x \to - \infty } \left( { - 4{x^5} - 3{x^3} + x + 1} \right)\).     

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

B

Ta có \(\mathop {\lim }\limits_{x \to  - \infty } \left( { - 4{x^5} - 3{x^3} + x + 1} \right)\)\( = \mathop {\lim }\limits_{x \to  - \infty } {x^5}\left( { - 4 - \frac{3}{{{x^2}}} + \frac{1}{{{x^4}}} + \frac{1}{{{x^5}}}} \right)\)\( =  + \infty \).

Vì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to  - \infty } \left( { - 4 - \frac{3}{{{x^2}}} + \frac{1}{{{x^4}}} + \frac{1}{{{x^5}}}} \right) =  - 4 < 0\\\mathop {\lim }\limits_{x \to  - \infty } {x^5} =  - \infty \end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} =  - \infty \) vì \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right) = 3 > 0\\\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\\x - 1 < 0,\forall x < 1\end{array} \right.\].

Lời giải

\(\mathop {\lim }\limits_{x \to 3} \frac{{2{x^2} - 5x - 3}}{{\sqrt {5x + 1}  - 4}}\)\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {x - 3} \right)\left( {\sqrt {5x + 1}  + 4} \right)}}{{5\left( {x - 3} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2x + 1} \right)\left( {\sqrt {5x + 1}  + 4} \right)}}{5} = \frac{{56}}{5} = 11,2\).

Trả lời: 11,2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP