Câu hỏi:

18/06/2025 7

Biết rằng khi nung nóng một vật với nhiệt độ tăng từ 20°C, mỗi phút tăng 4°C trong 70 phút, sau đó giảm mỗi phút 2°C trong 50 phút. Hàm số biểu thị nhiệt độ (°C) theo thời gian t (phút) có dạng \(T\left( t \right) = \left\{ \begin{array}{l}20 + 4t\;\;khi\;0 \le t \le 70\\a - 2t\;\;\;\;khi\;70 < t \le 120\end{array} \right.\) (a là hằng số).

a) Nhiệt độ ban đầu là 20°C.

b) Nhiệt độ lúc 10 phút là 60°C.

c) T(t) là hàm số liên tục trên tập xác định a Î ℝ.

d) Với a = 440°C thì T(t) là hàm số liên tục trên tập xác định.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Với t = 0 Þ T(t) = 20.

b) Với t = 10 Þ T(t) = 20 + 4.10 = 60.

c) Ta có T(70) = 20 + 4.70 = 300.

\(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ - }} \left( {20 + 4t} \right) = 300\); \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} \left( {a - 2t} \right) = a - 140\).

Nếu a = 300°C thì \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = 300 - 140 = 160 \ne \mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right)\).

Do đó hàm số không liên tục tại t = 70.

Vậy T(t) không liên tục trên tập xác định với ∀a Î ℝ.

d) Với a = 440°C thì \(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = T\left( {70} \right) = 300\).

Do đó với a = 440°C thì hàm số liên tục trên tập xác định.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Biết giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = a\)\(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = b\). Khi đó:

a) \(\mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = a\).

b) \(x = b\) là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.

c) \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).

d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\)\({u_1} = b\), thì \({u_3} = 2\).

Lời giải

Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{n\left( { - 3{n^2} + \frac{1}{n}} \right)}}{{n\left( {2 + \frac{5}{n}} \right)}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{ - 3{n^2} + \frac{1}{n}}}{{2 + \frac{5}{n}}} =  - \infty \),

do \(\left\{ {\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{n \to  + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) =  - \infty }\\{\mathop {\lim }\limits_{n \to  + \infty } \left( {2 + \frac{5}{n}} \right) = 2}\end{array}} \right.\)

\(\mathop {\lim }\limits_{n \to  + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {{25}^n}}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{{25}^n} \cdot {{\left( {\frac{{ - 1}}{5}} \right)}^n}}}{{{{25}^n}\left[ {{{\left( {\frac{2}{{25}}} \right)}^n} + 1} \right]}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{{\left( {\frac{{ - 1}}{5}} \right)}^n}}}{{{{\left( {\frac{2}{{25}}} \right)}^n} + 1}} = 0\).

a) \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = \mathop {\lim }\limits_{n \to  + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) =  - \infty \).

b) x = 0 là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.

c) \(\mathop {\lim }\limits_{n \to  + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).

d) u1 = 0; u3 = 0 + 2d = 1.

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 2

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Cho hai dãy (un) và (vn) thỏa mãn \(\lim {u_n} = \sqrt 3 \) và limvn = 2. Giá trị của \(\lim \frac{{{u_n}}}{{{v_n}}}\) bằng

Lời giải

B

\(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\sqrt 3 }}{2}\).

Câu 3

Tính giới hạn \(I = \lim \left( {\sqrt {{n^2} + 2n + 3} - n} \right)\).     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = - 2\). Giá trị \(\mathop {\lim }\limits_{x \to 3} \left[ {f\left( x \right) + 4x - 1} \right]\) bằng     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tính \(\lim \left( {3 + 2n + {n^3}} \right)\).     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay