Câu hỏi:
18/06/2025 18
Cho tứ giác \(ABCD\) có \(\widehat {C\,} = 60^\circ ,\widehat {D\,} = 80^\circ ,\widehat {A\,\,} - \widehat {B\,} = 10^\circ .\) Số đo của \(\widehat {A\,}\) là
Cho tứ giác \(ABCD\) có \(\widehat {C\,} = 60^\circ ,\widehat {D\,} = 80^\circ ,\widehat {A\,\,} - \widehat {B\,} = 10^\circ .\) Số đo của \(\widehat {A\,}\) là
Quảng cáo
Trả lời:
Đáp án đúng là: B
Tứ giác \(ABCD\) có \[\widehat {A\,} + \widehat {B\,} + \widehat {C\,} + \widehat {D\,} = 360^\circ \].
Suy ra \[\widehat {A\,} + \widehat {B\,} = 360^\circ - \left( {\widehat {C\,} + \widehat {D\,}} \right) = 360^\circ - \left( {60^\circ + 80^\circ } \right) = 220^\circ \].
Mà \[\widehat {A\,\,} - \widehat {B\,} = 10^\circ \] nên ta có \(\widehat {A\,\,} = \frac{{220^\circ + 10^\circ }}{2} = 115^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 19.
Ta có \({x^2} + {y^2} = {x^2} + 2xy + {y^2} - 2xy\)
\( = {\left( {x + y} \right)^2} - 2xy\)
\( = {5^2} - 2 \cdot 3 = 19\).
Vậy với \(x - y = 5\) và \(xy = 3\) thì giá trị của biểu thức \({x^2} + {y^2}\) bằng 19.
Lời giải
Đáp án đúng là: A

Trong hình trên, tứ giác \(ABCD\) có \(AB = BC = CD = DA\).
Do đó, tứ giác \(ABCD\) là hình thoi theo dấu hiệu: Tứ giác có 4 cạnh bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.