Câu hỏi:

18/06/2025 23

Để chứng minh tứ giác \(ABCD\) là hình vuông, dấu hiệu nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Tứ giác \(ABCD\) là hình thoi có hai đường chéo \(AC,\,\,BD\) vuông góc với nhau thì \(ABCD\) vẫn là hình thoi; chưa thể kết luận được \(ABCD\) là hình vuông.

Để chứng minh tứ giác \(ABCD\) là hình vuông, dấu hiệu nào sau đây là sai? (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 19.

Ta có \({x^2} + {y^2} = {x^2} + 2xy + {y^2} - 2xy\)

\( = {\left( {x + y} \right)^2} - 2xy\)

\( = {5^2} - 2 \cdot 3 = 19\).

Vậy với \(x - y = 5\) và \(xy = 3\) thì giá trị của biểu thức \({x^2} + {y^2}\) bằng 19.

Câu 2

Lời giải

Đáp án đúng là: A

Tứ giác dưới đây là hình thoi theo dấu hiệu nào?	 (ảnh 1)

Trong hình trên, tứ giác \(ABCD\) có \(AB = BC = CD = DA\).

Do đó, tứ giác \(ABCD\) là hình thoi theo dấu hiệu: Tứ giác có 4 cạnh bằng nhau.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phân tích các đa thức sau thành nhân tử:

a) \[10{x^2}\left( {2x - y} \right) + 6xy\left( {y - 2x} \right)\].       b) \[\frac{{{x^3}}}{8} - \frac{{{y^3}}}{{27}} + \frac{x}{2} - \frac{y}{3}\].                          c) \({x^3} + 27 + \left( {x + 3} \right)\left( {x - 9} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP