Câu hỏi:
18/06/2025 23
Cho tam giác nhọn \[ABC\] có \[AB < BC.\] Từ trung điểm \(M\) của cạnh \(AB\) kẻ đường thẳng song song với \(BC\) cắt cạnh \(AC\) tại \(N.\) Trên cạnh \(BC\) lấy điểm \(D\) sao cho \(BD = MN.\) Kẻ đường cao \[AH\left( {H \in BC} \right)\] của tam giác \[ABC\].
a) Tứ giác \(BMND\)là hình bình hành. b) Tam giác \(AMH\) cân tại \(A\).
c) \(\widehat {AMN} = \frac{2}{3}\widehat {HMN}.\) d) Tứ giác \(DHMN\) là hình thang cân.
Cho tam giác nhọn \[ABC\] có \[AB < BC.\] Từ trung điểm \(M\) của cạnh \(AB\) kẻ đường thẳng song song với \(BC\) cắt cạnh \(AC\) tại \(N.\) Trên cạnh \(BC\) lấy điểm \(D\) sao cho \(BD = MN.\) Kẻ đường cao \[AH\left( {H \in BC} \right)\] của tam giác \[ABC\].
a) Tứ giác \(BMND\)là hình bình hành. b) Tam giác \(AMH\) cân tại \(A\).
c) \(\widehat {AMN} = \frac{2}{3}\widehat {HMN}.\) d) Tứ giác \(DHMN\) là hình thang cân.
Quảng cáo
Trả lời:
Đáp án: a) Đúng. b) Sai. c) Sai. d) Đúng.
![Cho tam giác nhọn \[ABC\] có \[AB < BC.\] Từ trung điểm \(M\) của cạnh \(AB\) kẻ đường thẳng song song với \(BC\) cắt cạnh \(AC\) tại \(N.\) Trên cạnh \(BC\) lấy điểm \(D\) sao cho \(BD = MN.\) Kẻ đường cao \[AH\left( {H \in BC} \right)\] của tam giác \[ABC\]. a) Tứ giác \(BMND\)là hình bình hành. b) Tam giác \(AMH\) cân tại \(A\). c) \(\widehat {AMN} = \frac{2}{3}\widehat {HMN}.\) d) Tứ giác \(DHMN\) là hình thang cân. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid0-1750255998.png)
⦁ Tứ giác \(BMND\) có: \[MN\parallel BD{\rm{ }}\left( {MN\parallel BC} \right)\]; \[MN = BD\] (gt).
Do đó, tứ giác \(BMND\)là hình bình hành. Do đó ý a) là đúng.
⦁ Vì \(\Delta {\rm{ }}ABH\) vuông tại \(H\,\,\left( {AH \bot BC} \right)\) có \(HM\) là trung tuyến nên \(HM = \frac{1}{2}AB\).
Mà \(MA = \frac{1}{2}AB\) suy ra \(MA = HM\).
Vậy \(\Delta {\rm{ }}AMH\) cân tại \[M\]. Do đó ý b) sai.
⦁ Tứ giác \(DHMN\) có \[MN\parallel DH{\rm{ }}\left( {MN\parallel BC} \right)\] nên tứ giác \(DHMN\) là hình thang. \(\left( 1 \right)\)
Ta có \(AH \bot BC\); \[MN\parallel BC\] nên \(AH \bot MN\).
Vì \(\Delta {\rm{ }}AMH\) cân tại \[M\] có \(AH \bot MN\) nên \(MN\) là phân giác của \(\Delta {\rm{ }}AMH\).
Do đó \(\widehat {AMN} = \widehat {HMN}.\) Do đó ý c) sai.
⦁ Tứ giác \(BMND\)là hình bình hành nên \[ND\parallel MB\].
Do đó \(\widehat {AMN} = \widehat {DNM}\) (so le trong) nên \(\widehat {HMN} = \widehat {DNM}\). \(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra tứ giác \(DHMN\) là hình thang cân. Do đó ý d) đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 19.
Ta có \({x^2} + {y^2} = {x^2} + 2xy + {y^2} - 2xy\)
\( = {\left( {x + y} \right)^2} - 2xy\)
\( = {5^2} - 2 \cdot 3 = 19\).
Vậy với \(x - y = 5\) và \(xy = 3\) thì giá trị của biểu thức \({x^2} + {y^2}\) bằng 19.
Lời giải
Đáp án đúng là: A

Trong hình trên, tứ giác \(ABCD\) có \(AB = BC = CD = DA\).
Do đó, tứ giác \(ABCD\) là hình thoi theo dấu hiệu: Tứ giác có 4 cạnh bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.